Physics, asked by aswatharamesh06, 7 months ago

solve this fast........... ​

Attachments:

Answers

Answered by Anonymous
12

EXPLANATION :

 \bull  \:  \:  \:  \:  \: \LARGE \bf{Given  :}

 \to \sf{Initial  \: Velocity  \: =  \: 28 \:  m/s} \\  \\  \to \sf \: acceleration \:  =  - g \: m/ {s}^{2}  \\  \\  \sf \:  \to \: final \: velocity \:  \:  = 0 \: m/s

 \sf \LARGE{let,} \\

 \sf \: max \: hight \: reached \: =  h \: meter \\  \sf \: and \: required \: time \: t \: sec

 \bull  \:  \:  \:  \:  \: \LARGE \bf{Required \:  Formulas : :}

 \sf \:   \longrightarrow{v}^{2}  =  {u}^{2}  + 2gx

 \longrightarrow \: \sf \: x = ut +  \frac{1}{2} g {t}^{2}

 \longrightarrow  \sf \: S_t = u +  \frac{1}{2} g(2t - 1)

 \bull  \:  \:  \:  \:  \: \LARGE \bf{Solution :}

 \sf \boxed {\sf{ {v}^{2}  =  {u}^{2}  - 2gx}} \\  \\  \sf \: putting \: value \\  \\ \sf  \implies {0}^{2}  =  {28}^{2}  - 2 \times 9.8 \times h \\  \\  \implies \:  \sf \:  \underline{ \sf{h = 40}}

 \sf \: Now,  \: total \:  time  \: required \\  \\  \sf \: x = ut +  \frac{1}{2} g {t}^{2}  \\  \\  \implies \sf \: 40 = 28t  -  \frac{1}{2}  \times 9.8 \times  {t}^{2}  \\  \\  \implies \:  \underline{ \sf \:  t =  1.18}

\sf \: before \: reaching \: max \: hight  \\ \sf \:  last  \: sec \:  \\  \boxed{\sf  {S_t = u +  \frac{1}{2} g(2t - 1)}} \\  \\  \sf \: putting \: value  \\  \sf S_{0.18} = 28  -  \frac{1}{2}  \times 9.8(2  \times  0.18- 1) \\  \\  \implies \sf 31.136\: m

\sf \: velocity \: at  \: S_{0.18} \\  \\  \boxed{ \sf{ {v}^{2}  =  {u}^{2}  + 2gx}} \\  \\

\sf \: velocity \: at  \: S_{0.18} \\  \\  \boxed{ \sf{ {v}^{2}  =  {u}^{2}  + 2gx}} \\  \\  \sf \implies {v}^{2}  =  {28}^{2}  - 2 \times 9.8  \times 31.136 \\  \\  \therefore \boxed{ \boxed{{ \sf \: v = 13.18 \: m \:  {s}^{ - 1} }}}

______________________________________________

HAVE A WONDERFUL DAY...

Similar questions