Math, asked by nishantdhiman2843, 5 months ago

solve this fast fast fast​

Attachments:

Answers

Answered by ILLUSTRIOUS27
1

Simplify LHS and RHS seperately

LHS

(coseca - sina)(seca - cosa)

change this equation in the form of sinA and cosA only

 (\frac{1}{sina}  - sina)( \frac{1}{cosa} - cosa) \\  =   (\frac{1 -  {sin}^{2}a }{sina}) ( \frac{1 -  {cos}^{2}a }{cosa} ) \\

change 1-sin^2A in cos^2A and 1- cos^2A in sin^2A

  \frac{ {cos}^{2} a}{sina}  \times  \frac{ {sin}^{2}a }{cosa}  = cosa.sina

LHS=cosA.sinA

RHS

 \frac{1}{tana + cota} =  \frac{1}{ \frac{sina}{cosa} +  \frac{cosa}{sina}  }   \\  =  \frac{cosa.sina}{ {sin}^{2}  a+  {cos}^{2}  a}  = cosa.sina

RHS=cosA.sinA

LHS=RHS

Hence proved

Similar questions