Math, asked by mamtasrivastavashta1, 2 months ago

solve this fast ... it's urgent ... don't give any irrelevant
ansr !! ​

Attachments:

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\bigg[ \begin{matrix}x + 2&6 \\ 3&5z \end{matrix} \bigg] = \bigg[ \begin{matrix} - 5& {y}^{2} + y \\ 3& - 20 \end{matrix} \bigg]

Since, matrices are equal.

It means, corresponding elements are same.

\rm :\longmapsto\:x + 2 =  - 5

\rm :\longmapsto\:x =  - 5 - 2

\bf\implies \:\boxed{ \bf{ \:x =  - 7}}

Also,

\rm :\longmapsto\:5z =  - 20

\bf\implies \:\boxed{ \bf{ \:z =  -  \: 4}}

Also,

\rm :\longmapsto\: {y}^{2} + y = 6

\rm :\longmapsto\: {y}^{2} + y  - 6 = 0

\rm :\longmapsto\: {y}^{2} + 3y - 2y  - 6 = 0

\rm :\longmapsto\:y(y + 3) - 2(y + 3) = 0

\rm :\longmapsto\:(y + 3)(y - 2) = 0

\bf\implies \:\boxed{ \bf{ \:y =  - 3 \:  \: or \:  \: y = 2}}

Additional Information :-

Let us consider same type of example!!

Question :- Solve for x and y, if

\rm :\longmapsto\:\bigg[ \begin{matrix}x + y&5 \\ 1&xy \end{matrix} \bigg] = \bigg[ \begin{matrix}6&5 \\ 1&8 \end{matrix} \bigg]

Solution

Given that

\rm :\longmapsto\:\bigg[ \begin{matrix}x + y&5 \\ 1&xy \end{matrix} \bigg] = \bigg[ \begin{matrix}6&5 \\ 1&8 \end{matrix} \bigg]

Since, Matrices are equal.

So, corresponding elements are same

\rm :\longmapsto\:x + y = 6

\rm :\longmapsto\: y = 6 - x -  -  - (1)

Also,

\rm :\longmapsto\:xy = 8

On substituting the value of y, we get

\rm :\longmapsto\:x(6 - x) = 8

\rm :\longmapsto\:6x -  {x}^{2} = 8

\rm :\longmapsto\: {x}^{2} - 6x + 8 = 0

\rm :\longmapsto\: {x}^{2} - 4x - 2x + 8 = 0

\rm :\longmapsto\:x(x - 4)  -  2(x - 4) = 0

\rm :\longmapsto\:(x - 4)(x - 2) = 0

\bf\implies \:x = 2 \:  \:  \: or \:  \:  \: x = 4

So, corresponding values of y are as follow

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y = 6 - x \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 4 & \sf 2 \\ \\ \sf 2 & \sf 4 \end{array}} \\ \end{gathered}

Similar questions