solve this fast
❌❌spamming not allow here❌❌
Answers
Ques.11
Answer:
Given:
First term of AP=a
Second term of AP=b
Third term of AP=c
Common difference of AP=b-a
Solution:
Now,
___________________________
___________________________
Sum of AP=
Ques.12
Answer:
Given:
Solution:
Hence,
Ques.13
Answer:
Let the first term of AP = a
common difference = d
To show:
(m+n)th term is zero or a + (m+n-1)d = 0
Solution:
mth term = a + (m-1)d
nth term = a + (n-1) d
Given that m{a +(m-1)d} = n{a + (n -1)d}
⇒ am + m²d -md = an + n²d - nd
⇒ am - an + m²d - n²d -md + nd = 0
⇒ a(m-n) + (m²-n²)d - (m-n)d = 0
⇒ a(m-n) + {(m-n)(m+n)}d -(m-n)d = 0
⇒ a(m-n) + {(m-n)(m+n) - (m-n)} d = 0
⇒ a(m-n) + (m-n)(m+n -1) d = 0
⇒ (m-n){a + (m+n-1)d} = 0
⇒ a + (m+n -1)d = 0/(m-n)
⇒ a + (m+n -1)d = 0
He bgh..................
If the points (x, 1), (3, y), (-2, 3) and (-3, -2) be the vertices of a parallelogram, then find the value of
2x + y.