Math, asked by symashah000, 15 days ago

Solve this friends. ​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Given- }}

\rm :\longmapsto\:a: b \:  =  \: b: c

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\:\dfrac{a}{a + b} = \dfrac{a - b}{a - c}

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:a: b \:  =  \: b: c

\rm :\longmapsto\:\dfrac{a}{b}  = \dfrac{b}{c}  = k

\rm :\implies\:b = ck

and

\rm :\longmapsto\:a = bk

\bf\implies \:a = ck.k =  {ck}^{2}

Consider LHS,

\rm :\longmapsto\:\dfrac{a}{a + b}

 \rm \:  =  \:  \: \dfrac{bk}{bk + b}

 \rm \:  =  \:  \: \dfrac{bk}{b(k + 1)}

 \rm \:  =  \:  \: \dfrac{k}{k + 1}

\bf\implies \:\: \dfrac{a}{a + b}  =  \:  \: \dfrac{k}{ k  + 1}  -  -  - (1)

Now, Consider RHS,

\rm :\longmapsto\:\dfrac{a - b}{a - c}

\rm \:  =  \:  \: \dfrac{c {k}^{2} - ck }{ {ck}^{2}  - c}

\rm \:  =  \:  \: \dfrac{ck(k - 1)}{ c( {k}^{2}  - 1)}

\rm \:  =  \:  \: \dfrac{k(k - 1)}{ ( {k}^{2}  - 1)}

\rm \:  =  \:  \: \dfrac{k(k - 1)}{ (k - 1)(k + 1)}

\rm \:  =  \:  \: \dfrac{k}{ k  + 1}

\bf\implies \:\: \dfrac{a - b}{a - c}  =  \:  \: \dfrac{k}{ k  + 1}  -  -  - (2)

From equation (1) and (2), we concluded that

\bf :\longmapsto\:\dfrac{a}{a + b} = \dfrac{a - b}{a - c}

Hence, Proved

Additional Information :-

\rm :\longmapsto\:\dfrac{a}{b}  = \dfrac{c}{d} \:  \:  \: then

\rm :\longmapsto\:\dfrac{a}{c}  = \dfrac{b}{d} \:  \:is \: called \: alternendo

\rm :\longmapsto\:\dfrac{b}{a}  = \dfrac{d}{c} \:  \:is \: called \: invertendo

\rm :\longmapsto\:\dfrac{a + b}{b}  = \dfrac{c + d}{d} \:  \: is \: called \: componendo

\rm :\longmapsto\:\dfrac{a -  b}{b}  = \dfrac{c  -  d}{d} \:  \: is \: called \: dividendo

Similar questions