Math, asked by symashah000, 2 months ago

solve this friends no spam​

Attachments:

Answers

Answered by rishu6845
2

Step-by-step explanation:

1 +  {sin}^{2}  \alpha  = 3 \: sin \alpha  \: cos \alpha  \\ dividing \: whole \: equation \: by \:  {cos}^{2}  \alpha  \\  \dfrac{1}{ {cos}^{2} \alpha  }  +  \dfrac{ {sin}^{2}  \alpha }{ {cos}^{2}  \alpha }  = 3 \:  \dfrac{sin \alpha  \: cos \alpha }{ {cos}^{2} \alpha  }  \\  {sec}^{2}  \alpha  +  {tan}^{2}  \alpha  = 3 \: tan \alpha  \\ 1 +  {tan}^{2}  \alpha +  {tan}^{2}  \alpha   = 3 \: tan \alpha  \\ 2 {tan}^{2}  \alpha   - 3 \: tan \alpha  \:  + 1 = 0 \\ 2 {tan}^{2}  \alpha  - (2 + 1)tan \alpha  + 1 = 0 \\ 2 {tan}^{2}  \alpha  - 2tan \alpha  - tan \alpha  + 1 = 0 \\ 2 \: tan \alpha  \: (tan \alpha  - 1) - \: 1( tan \alpha  - 1) = 0 \\ (tan \alpha  - 1) \: (2tan \alpha  - 1) = 0 \\ if \\ tan \alpha  \:  - 1 = 0 \\ tan \alpha  = 1 \\ if \: 2tan \alpha  - 1 = 0 \\ 2tan \alpha  = 1 \\ tan \alpha  =  \dfrac{1}{2}

Answered by MysticSohamS
1

Answer:

hey here is your answer in above pics

pls mark it as brainliest

Attachments:
Similar questions