Math, asked by vivek1634, 1 year ago

solve this..... genius... ​

Attachments:

Answers

Answered by Swarup1998
15
\underline{\text{Solution :}}

\mathrm{Let,\:u=5^{x}\:\&\:v=log_{5}x}

\quad\quad\:\;\;\;\;\;\implies \mathrm{v=\frac{log_{e}x}{log_{e}5}}

\text{Taking differentials, we get}

\mathrm{du=5^{x}\:log_{e}5}

\mathrm{dv=\frac{1}{x\:log_{e}5}}

\therefore \mathrm{\frac{du}{dv}=\frac{5^{x}\:log_{e}5}{\frac{1}{x\:log_{e}5}}}

\to \boxed{\mathrm{\frac{d(5^{x})}{d(log_{5}x)}=x\:5^{x}(log_{e}5)^{2}}}

\underline{\text{Formulas :}}

\mathrm{1.\:log_{a}X=\frac{log_{e}X}{log_{e}a}}

\mathrm{2.\:\frac{d}{dx}(a^{mx})=m\:a^{mx}\:log_{e}a,\:(a>0)\:m}\in \mathbb{R}

\mathrm{3.\:\frac{d}{dx}(log_{e}mx)=\frac{1}{x},\:(mx>0)\:m}\in \mathbb{R}

vivek1634: thank you so much sir....
Swarup1998: See the solution again, please!
vivek1634: still it is not clear
vivek1634: I understand only little
Swarup1998: Okay! I have added the rules now. Hope you will understand now.
generalRd: awesome dada ^_^
Swarup1998: :)
sanyuktarora5375: Good! Ab to reply dedo yaar and mujhe unblock kardo plz
Similar questions