solve this guys important
Attachments:
Answers
Answered by
0
{For construction work, refer to the Attachment.}
/_BAP + /_EAP = 180°
132° + /_EAP = 180°
/_EAP = 180° - 132°
/_EAP = 48°
Again
/_APC + /_APE = 180°
148° + /_APE = 180°
/_APE = 180° - 148°
/_APE = 32°
Now,
In ∆ EAP,
/_APE + /_EAP + /_PEA = 180° ( Angle Sum Property )
32° + 48° + /_PEA = 180°
80° + /_PEA = 180°
/_PEA = 180° - 80°
/_PEA = 100°
Now,
/_PEA = /_PCD ( Alternate Exterior Angles )
•°•
/_PCD = 100°
x = 100°
Hence,
Option 1) 100° is correct.
^^"
/_BAP + /_EAP = 180°
132° + /_EAP = 180°
/_EAP = 180° - 132°
/_EAP = 48°
Again
/_APC + /_APE = 180°
148° + /_APE = 180°
/_APE = 180° - 148°
/_APE = 32°
Now,
In ∆ EAP,
/_APE + /_EAP + /_PEA = 180° ( Angle Sum Property )
32° + 48° + /_PEA = 180°
80° + /_PEA = 180°
/_PEA = 180° - 80°
/_PEA = 100°
Now,
/_PEA = /_PCD ( Alternate Exterior Angles )
•°•
/_PCD = 100°
x = 100°
Hence,
Option 1) 100° is correct.
^^"
Attachments:
Answered by
0
Draw PQ // AB // CD
i ) a + b = 180°
[ Sum of interior angles same side
of the transversal ]
=> a + 132 = 180°
=> a = 180° - 132°
=> a = 48°
ii ) a + y = 148° [ given ]
=> 48° + y = 148°
=> y = 148° - 48°
=> y = 100°
iii ) PQ// CD, PC is the transversal ,
x = y = 100° [corresponding angles ]
Therefore ,
x = 100°
Option ( 1 ) is correct.
••••
i ) a + b = 180°
[ Sum of interior angles same side
of the transversal ]
=> a + 132 = 180°
=> a = 180° - 132°
=> a = 48°
ii ) a + y = 148° [ given ]
=> 48° + y = 148°
=> y = 148° - 48°
=> y = 100°
iii ) PQ// CD, PC is the transversal ,
x = y = 100° [corresponding angles ]
Therefore ,
x = 100°
Option ( 1 ) is correct.
••••
Attachments:
Similar questions