Math, asked by junaid65, 1 year ago

solve this I'm finding it very difficult

Attachments:

Answers

Answered by FuturePoet
3

Hi!

____________________________________

Given :

a , b and c are in A.P.

To Prove :

\frac{a(b+c)}{bc} , \frac{b(c + a )}{ca} , \frac{c(a + b)}{ab}

Proof :

\frac{a(b+c)}{bc} , \frac{b(c + a )}{ca} , \frac{c(a + b)}{ab}

On Adding 1 ,We get

\frac{a(b+c)}{bc} + 1 ,\frac{b(c + a )}{ca} + 1 ,\frac{c(a + b)}{ab} + 1

\frac{(ab + bc+ ac )}{bc} , \frac{(ab + bc + ac) }{ca} , \frac{(ab + bc + ac)}{ab}

On Dividing by (ab + bc + ac )

\frac{1}{bc} , \frac{1}{ca} , \frac{1}{ab}

Multiply by abc

a , b , c

Hence , \frac{a(b+c)}{bc} , \frac{b(c + a )}{ca} , \frac{c(a + b)}{ab} are in A.P.

_______________________________________

Thanks !!






junaid65: thank u very much
Similar questions