Math, asked by rlikesh23, 14 hours ago

solve this I will mark as brain list












.​

Attachments:

Answers

Answered by Anonymous
8

Answer:

  • a = 7
  • b = 4

Step-by-step explanation:

We have,

   \tt \dfrac{ 2 + \sqrt{3} }{2 -  \sqrt{3} }  = a + b \sqrt{3}

Now, rationalising the denominator of LHS

{ \implies   \tt \dfrac{ 2 + \sqrt{3} }{2 -  \sqrt{3} } \times  \dfrac{2 +  \sqrt{3} }{2  +  \sqrt{3} }   = a + b \sqrt{3} }

{ \implies   \tt \dfrac{( 2 + \sqrt{3})^{2}  }{ {(2)}^{2} - ( \sqrt{3} )^ {2} }  = a + b \sqrt{3} }

{ \implies   \tt \dfrac{ {2}^{2}  +  { \sqrt{3} }^{2}    + 2(2)( \sqrt{3})  }{4 - 3}  = a + b \sqrt{3} }

{ \implies   \tt \dfrac{ 4  +  3    +4\sqrt{3}  }{1}  = a + b \sqrt{3} }

{ \implies   \tt7    +4\sqrt{3}   = a + b \sqrt{3} }

On comparing LHS and RHS, we get:

  • \boxed{\sf a = 7 }
  •  \boxed{\sf b = 4}

Hence the required values of a and b are 7 and 4 respectively.

Similar questions