Math, asked by deepti373, 1 year ago

solve this i will mark he or she brainliest

Attachments:

Answers

Answered by madhura41
0
Heyy Dear❤
Here is u r Ans ➡

C) ➡
 = (2x +  \frac{1}{2x } ) {}^{3}  - (2x -  \frac{1}{2x} ) {}^{3}

 = using \:  >  \: a {}^{}  - b {}^{3}  = (a - b)(a {}^{2}  + ab + b {}^{2} )

 = (2x +  \frac{1}{2x}  - (2x -  \frac{1}{2x} )) \times ((2x +  \frac{1}{2x} ) {}^{2}  + (2x +  \frac{1}{2x} ) \times (2x -  \frac{1}{2x} ) + (2x -  \frac{1}{2x} ) {}^{2} )

 = (2x +  \frac{1}{2x}  - 2x +  \frac{1}{2x} ) \times (( \frac{4x {}^{2}  + 1}{2 x} ) {}^{2} ) +  \frac{4x {}^{2}  + 1}{2x}  \times  \frac{4x {}^{2}  + 1}{2x}  + ( \frac{4x {}^{2}  -  1 }{2x} ) {}^{2} )

 =  \frac{2}{2x}  \times ( \frac{(4x {}^{2} + 1) {}^{2}  }{4x {}^{2} }  +  \frac{(4x {}^{2}  + 1) \times (4x {}^{2}  - 1)}{4x {}^{2} }  +  \frac{(4x {}^{2} - 1) }{4x {}^{2} } )

 = reduce \: 2 \: or \: 2x \:

 = then. \:  \: using >  \: (a - b)(a + b) = a {}^{2}  - b {}^{2}

 =  \frac{1}{x}  \times ( \frac{(4x {}^{2}  + 1) {}^{2} }{4x {}^{2} }  +  \frac{16x {}^{4}  - 1}{4x {}^{2} }  +  \frac{(4x {}^{2}  - 1) {}^{2} }{4x {}^{2} }

☄☄☄☄☄☄☄☄☄☄☄☄☄☄

Hope This Helps u ☺.
Similar questions