Math, asked by mundrakol, 5 hours ago

Solve this....
I will mark u brainlist​

Attachments:

Answers

Answered by mathdude500
20

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\dfrac{by + cz}{ {b}^{2}  +  {c}^{2} }  = \dfrac{cz + ax}{ {c}^{2}  +  {a}^{2} }  = \dfrac{ax + by}{ {a}^{2}  +  {b}^{2} }

We know, if

\boxed{ \bf{ \: \dfrac{a}{b}  = \dfrac{c}{d} \rm \implies\:\dfrac{a}{b}  = \dfrac{c}{d}  = \dfrac{a + b}{c + d} }}

This process is called Addendo.

So, using this process, we get

\rm :\longmapsto\:\dfrac{by + cz}{ {b}^{2}  +  {c}^{2} }  = \dfrac{cz + ax}{ {c}^{2}  +  {a}^{2} }  = \dfrac{ax + by}{ {a}^{2}  +  {b}^{2} }  = \dfrac{2ax + 2by + 2cz}{2 {a}^{2}+{2b}^{2}+{2c}^{2} }

\rm :\longmapsto\:\dfrac{by + cz}{ {b}^{2}  +  {c}^{2} }  = \dfrac{cz + ax}{ {c}^{2}  +  {a}^{2} }  = \dfrac{ax + by}{ {a}^{2}  +  {b}^{2} }  = \dfrac{2(ax + by + cz)}{2 ({a}^{2}+{b}^{2}+{c}^{2}) }

\rm :\longmapsto\:\dfrac{by + cz}{ {b}^{2}  +  {c}^{2} }  = \dfrac{cz + ax}{ {c}^{2}  +  {a}^{2} }  = \dfrac{ax + by}{ {a}^{2}  +  {b}^{2} }  = \dfrac{ax + by + cz}{{a}^{2}+{b}^{2}+{c}^{2}}

Now, Consider first and fourth member

\rm :\longmapsto\:\dfrac{by + cz}{ {b}^{2}  +  {c}^{2} }  = \dfrac{ax + by + cz}{{a}^{2}+{b}^{2}+{c}^{2}}

can be rewritten as

\rm :\longmapsto\:\dfrac{ {a}^{2}  +  {b}^{2}  +  {c}^{2} }{ {b}^{2}  +  {c}^{2} }  = \dfrac{ax + by + cz}{by + cz}

On Subtracting 1 from each term, we get

\rm :\longmapsto\:\dfrac{ {a}^{2}  +  {b}^{2}  +  {c}^{2} }{ {b}^{2}  +  {c}^{2} }  - 1 = \dfrac{ax + by + cz}{by + cz}  - 1

\rm :\longmapsto\:\dfrac{ {a}^{2}  +  {b}^{2}  +  {c}^{2}  -  {b}^{2}  -  {c}^{2} }{ {b}^{2}  +  {c}^{2} } = \dfrac{ax + by + cz - by - cz}{by + cz}

\rm :\longmapsto\:\dfrac{ {a}^{2}}{ {b}^{2}  +  {c}^{2} } = \dfrac{ax }{by + cz}

On cancelation of a in numerators, we get

\rm :\longmapsto\:\dfrac{ {a}}{ {b}^{2}  +  {c}^{2} } = \dfrac{x }{by + cz}

\rm :\longmapsto\:\dfrac{ {x}}{a} = \dfrac{by + cz}{ {b}^{2}  +  {c}^{2} }  -  -  - (1)

Now, Consider second and fourth member, we get

\rm :\longmapsto\: \dfrac{cz + ax}{ {c}^{2}  +  {a}^{2} }    = \dfrac{ax + by + cz}{{a}^{2}+{b}^{2}+{c}^{2}}

can be rewritten as

\rm :\longmapsto\:\dfrac{ {a}^{2}  +  {b}^{2}  +  {c}^{2} }{ {c}^{2}  +  {a}^{2} }  = \dfrac{ax + by + cz}{cz + ax}

On Subtracting 1 from each term, we get

\rm :\longmapsto\:\dfrac{ {a}^{2}  +  {b}^{2}  +  {c}^{2} }{ {c}^{2}  +  {a}^{2} }  - 1 = \dfrac{ax + by + cz}{cz + ax}  - 1

\rm :\longmapsto\:\dfrac{ {a}^{2}  +  {b}^{2}  +  {c}^{2}  -  {c}^{2}  -  {a}^{2} }{ {c}^{2}  +  {a}^{2} } = \dfrac{ax + by + cz - cz - ax}{cz + ax}

\rm :\longmapsto\:\dfrac{ {b}^{2}}{ {c}^{2}  +  {a}^{2} } = \dfrac{by }{cz + ax}

On cancel b in numerators, we get

\rm :\longmapsto\:\dfrac{ {b}}{ {c}^{2}  +  {a}^{2} } = \dfrac{y }{cz + ax}

can be rewritten as

\rm :\longmapsto\:\dfrac{ {cz + ax}}{ {c}^{2}  +  {a}^{2} } = \dfrac{y }{b} -  -  -  - (2)

Now, Consider third and fourth member,

\rm :\longmapsto\: \dfrac{ax + by}{ {a}^{2}  +  {b}^{2} }  = \dfrac{ax + by + cz}{{a}^{2}+{b}^{2}+{c}^{2}}

can be rewritten as

\rm :\longmapsto\:\dfrac{ {a}^{2}  +  {b}^{2}  +  {c}^{2} }{ {b}^{2}  +  {a}^{2} }  = \dfrac{ax + by + cz}{by + ax}

On Subtracting 1 from each term, we get

\rm :\longmapsto\:\dfrac{ {a}^{2}  +  {b}^{2}  +  {c}^{2} }{ {b}^{2}  +  {a}^{2} }  - 1 = \dfrac{ax + by + cz}{by + ax}  - 1

\rm :\longmapsto\:\dfrac{ {a}^{2}  +  {b}^{2}  +  {c}^{2}  -  {b}^{2}  -  {a}^{2} }{ {b}^{2}  +  {a}^{2} }= \dfrac{ax + by + cz - by - ax}{by + ax}

\rm :\longmapsto\:\dfrac{ {c}^{2} }{ {b}^{2}  +  {a}^{2} }= \dfrac{cz}{by + ax}

\rm :\longmapsto\:\dfrac{ {c}}{ {b}^{2}  +  {a}^{2} }= \dfrac{z}{by + ax}

\rm :\longmapsto\:\dfrac{ {ax + by}}{ {a}^{2}  +  {b}^{2} }= \dfrac{z}{c} -  -  -  - (3)

As it is given that,

\rm :\longmapsto\:\dfrac{by + cz}{ {b}^{2}  +  {c}^{2} }  = \dfrac{cz + ax}{ {c}^{2}  +  {a}^{2} }  = \dfrac{ax + by}{ {a}^{2}  +  {b}^{2} }

From equation (1), (2) and (3), we concluded that

\bf\implies \:\dfrac{x}{a}  = \dfrac{y}{b}  = \dfrac{z}{c}

Hence, Proved

Similar questions