solve this if u feel u are gud in maths
Attachments:
Answers
Answered by
1
a = 2+√3
1/a = 1/2+√3
= 1/(2+√3) × (2-√3)/(2-√3)
= 2-√3/(2²-√3²)
= 2-√3/(4-3)
= 2-√3/1
1/a = 2-√3
a+1/a = 2+√3+2-√3
a+1/a = 4
a³+1/a³ = (a+1/a)³ - 3(a)(1/a)[a+1/a]
= 4³ - 3(4)
= 64 - 12
= 52
1/a = 1/2+√3
= 1/(2+√3) × (2-√3)/(2-√3)
= 2-√3/(2²-√3²)
= 2-√3/(4-3)
= 2-√3/1
1/a = 2-√3
a+1/a = 2+√3+2-√3
a+1/a = 4
a³+1/a³ = (a+1/a)³ - 3(a)(1/a)[a+1/a]
= 4³ - 3(4)
= 64 - 12
= 52
Answered by
0
Hello friend!
Here's ur answer!
a = 2+root 3
1/a = 1/2+root 3
= 1/(2+root 3) × (2-root 3)/(2-root 3)
= 2-root 3/(2²-root3²)
= 2-root 3/(4-3)
= 2-root 3/1
1/a = 2- root3
a+1/a = 2+root 3+2-root3
a+1/a = 4
a³+1/a³
= (a+1/a)³ - 3(a)(1/a)[a+1/a]
= 4³ - 3(4)
= 64 - 12
= 52
Here's ur answer!
a = 2+root 3
1/a = 1/2+root 3
= 1/(2+root 3) × (2-root 3)/(2-root 3)
= 2-root 3/(2²-root3²)
= 2-root 3/(4-3)
= 2-root 3/1
1/a = 2- root3
a+1/a = 2+root 3+2-root3
a+1/a = 4
a³+1/a³
= (a+1/a)³ - 3(a)(1/a)[a+1/a]
= 4³ - 3(4)
= 64 - 12
= 52
Similar questions