Math, asked by NITESH761, 1 month ago

solve this if you can do it. don't give meaningless answers.​

Attachments:

Answers

Answered by attripriya554
0

Step-by-step explanation:

Attachments:
Answered by MysticSohamS
3

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find : \\   \:  \frac{1}{tan \: x}  +  \frac{sin \: x}{1 + cos \: x}  \\  \\ given \: that \\ 1 + cot {}^{2} x = ( \sqrt{3 + 2 \sqrt{2} - 1 }  \: ) {}^{2}  \\  \\ cosec {}^{2} x = ( \sqrt{3 + 2 \sqrt{2}  - 1}  \: ) {}^{2}  \\  \\ cosec \: x =  \sqrt{3 + 2 \sqrt{2} - 1 }  \\  \\ now \: given \: expression \: can \:  \: be \\ written \: as \\  \\  \frac{1}{tan \: x}  +  \frac{sin \: x}{1 + cos \: x}  \\  \\  =  \frac{1}{tan \: x}  + \frac{sin \: x}{1 + cos \: x}  \times  \frac{1 - cos \: x}{1 - cos \: x}  \\  \\  = cot \: x + \frac{sin \: x(1 - cos \: x)}{1 - cos {}^{2} \: x }  \\  \\  = cot \: x +  \frac{sin \: x(1 - cos \: x)}{sin {}^{2} x}  \\  \\  = cot \:  x +  \frac{1 - cos \: x}{sin \: x}  \\  \\  = cot \: x +  \frac{1}{sin \: x}  -  \frac{cos \: x}{sin \: x}  \\  \\  = cot \: x + cosec \: x - cot \: x \\  \\  = cosec \: x \\  \\  =  \sqrt{3 + 2 \sqrt{2}  - 1}

Similar questions