solve this im sharing picture
Attachments:
Answers
Answered by
2
x + y +z = 0
=> x + y = - z ----------(1)
On cubing both sides, we get
x^3 + y^3 + 3xy ( x +y) = - z^3
=> x^3 + y^3 + 3xy ( - z) = - z^3 [ using equation 1]
=> x^3 + y^3 - 3xyz = - z^3
=> x^3 + y^3 + z^3 = 3xyz
Now,
( - 12) + 7 + 5 = - 12 + 12 = 0
So,
(-12)^3 + 7^3 + 5^3 = 3 (-12)(7)(5)
= - 1260
=> x + y = - z ----------(1)
On cubing both sides, we get
x^3 + y^3 + 3xy ( x +y) = - z^3
=> x^3 + y^3 + 3xy ( - z) = - z^3 [ using equation 1]
=> x^3 + y^3 - 3xyz = - z^3
=> x^3 + y^3 + z^3 = 3xyz
Now,
( - 12) + 7 + 5 = - 12 + 12 = 0
So,
(-12)^3 + 7^3 + 5^3 = 3 (-12)(7)(5)
= - 1260
aaraf:
thanks
Answered by
1
x + y +z = 0
=> x + y = - z ----------(1)
On cubing both sides, we get
x^3 + y^3 + 3xy ( x +y) = - z^3
=> x^3 + y^3 + 3xy ( - z) = - z^3 [ using equation 1]
=> x^3 + y^3 - 3xyz = - z^3
=> x^3 + y^3 + z^3 = 3xyz
Now,
( - 12) + 7 + 5 = - 12 + 12 = 0
So,
(-12)^3 + 7^3 + 5^3 = 3 (-12)(7)(5)
= - 1260
hope it helped ⚡
Similar questions
Science,
8 months ago
Computer Science,
1 year ago