Math, asked by MrAlphaRanger, 7 months ago

Solve this in attachment :::: ​

Attachments:

Answers

Answered by RISH4BH
99

\large{\underline{\underline{\red{\sf{\hookrightarrow Given:- }}}}}

  • A frequency distribution table is given to us .
  • The mean is 62.8

\large{\underline{\underline{\red{\sf{\hookrightarrow To\:Find:-}}}}}

  • The value of x .

\large{\underline{\underline{\red{\sf{\hookrightarrow Solution:-}}}}}

Now , we may prepare it like this ,

\boxed{\begin{tabular}{|c|c|c|c|}\cline{1-4} Class Interval & Frequency &Class Mark & $\sf f_i\times x_i$  \\ \cline{1-4} $0-20$&5&10&50 \\ \cline{1-4} $20-40$&8&30&240 \\ \cline{1-4} $40-60$&x&50&50x \\ \cline{1-4} $60-80$&12&70&840 \\ \cline{1-4} $80-100$&7&90&630 \\ \cline{1-4} $100-120$ &8&110&880 \\ \cline{1-4} & $\Sigma f_i=(40+x)$ &&$\Sigma(f_i\times x_i) =2640+50x$ \end{tabular}}

[ Note - If LaTeX doesn't work on app , see attachment ]

\tt:\implies Mean=\dfrac{\Sigma(f_i\times x_i)}{\Sigma f_i}=\dfrac{2640+50x}{40+x}

\tt:\implies \dfrac{2640+50x}{40+x}=62.8

\tt:\implies 2640+50x=(62.8\times 40)+62.8x

\tt:\implies 2640 + 50x = 2512 + 62.8x

\tt:\implies 62.8x-50x=2640-2512

\tt:\implies 12.8x = 128

\tt:\implies x =\dfrac{128}{12.8}

\underline{\boxed{\red{\tt{\longmapsto x = 10}}}}

\pink{\boxed{\purple{\tt{\dag Hence\:value\:of\:x\:is\:10.}}}}

Attachments:
Answered by Anonymous
1

Answer:

Hence,\:the\:value\:of\:x\:is\:10.

Step-by-step explanation:

It is the correct answer.

Hope this attachment helps you.

Attachments:
Similar questions