Math, asked by chubbygirl2, 3 months ago

solve this in your notebook and post to me​

Attachments:

Answers

Answered by Flaunt
323

\sf\huge\bold{\underline{\underline{{Solution}}}}

\sf \large\longmapsto \dfrac{81 \times  {3}^{n + 1} - 9 \times  {3}^{n}  }{81 \times  {3}^{n + 2}  - 3 \times  {3}^{n + 2} }

=>81 can also be written as 3×3×3×3 or 3⁴

\sf \large\longmapsto \dfrac{ {3}^{4} \times  {3}^{n + 1}  -  {3}^{2} \times  {3}^{n}   }{ {3}^{4} \times  {3}^{n + 2}   - 3 \times  {3}^{n + 2} }

Concept

  • If bases are same then their power gets added in multiplication and gets substracted during division.

 \sf \large\boxed{\bold{ \red{ \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n} }}}

\sf \large\boxed{\bold{ \red{ {a}^{m}  \times  {a}^{n}  =  {a}^{m + n} }}}

\sf \large\longmapsto {3}^{0}  \times  {3}^{n + 1 - (n + 2)}  -  {3}^{2 - 1}  \times  {3}^{n - (n + 2)}

\sf \large\boxed{\bold{ \green{ {a}^{0}  = 1}}}

❛Any non-zero value having zero power then it is equals to one ❜

\sf\large \longmapsto1 \times  {3}^{n + 1 - n - 2}  - 3 \times  {3}^{n - n - 2}

\sf\large \longmapsto1 \times  {3}^{1 - 2}  - 3 \times  {3}^{ - 2}

\sf \large\longmapsto {3}^{ - 1}  -  {3}^{ -  2 + 1}

\sf \large\longmapsto {3}^{ - 1}  -  {3}^{ - 1}

\sf\large  \boxed{\bold{ \blue{ \dfrac{1}{x}  =  {x}^{ - 1} }}}

\sf\large \longmapsto \dfrac{1}{3}  -  \dfrac{1}{3}  = 0

Similar questions