Solve this indefinite integral
Attachments:
Answers
Answered by
1
I = ∫ dx / (sinx + secx)
= ∫ [ cosx / (cosxsinx + 1) ] dx
= ∫ [2cosx / 2(cosxsinx + 1) ] dx
= ∫ [ ( cosx + cosx + sinx - sinx) / (2cosxsinx + 2) ] dx
= ∫ [ ( cosx + sinx) / (2cosxsinx + 2) ] dx + ∫ [ ( cosx - sinx) / (2cosxsinx + 2) ] dx
= - ∫ [ (cosx + sinx)/( -3 - 2cosxsinx + cos²x + sin²x ) ] dx + ∫ [ ( cosx - sinx) / (2cosxsinx + 1 + cos²x + sin²x ) ] dx
= - ∫ [ (cosx + sinx)/( -3 + (cosx - sinx)² ) ] dx + ∫ [ ( cosx - sinx)/ ( 1 + ( cosx + sinx)² ) ] dx
= - ∫ [ 1 /( -3 + (sinx - cosx )² ) ] d(sinx - cosx) + ∫ [ 1/ ( 1 + (sinx + cosx)² ) ] d(sinx + cosx)
= - ∫ [ 1/( -3 + (sinx - cosx )² ) ] d(sinx - cosx) + ∫ [ 1/ ( 1 + (sinx + cosx)² ) ] d(sinx + cosx)
= - ∫ [ 1/( -3 + t² ) ] dt + ∫ [ 1/ ( 1 + u² ) ] du
= ( 1/√3 ) ln | (t + √3) / (t - √3) | + arctgu + C
= ( 1/√3 ) ln | (sinx - cosx + √3) / (sinx - cosx - √3) | + arctg(sinx + cosx) + C
= ∫ [ cosx / (cosxsinx + 1) ] dx
= ∫ [2cosx / 2(cosxsinx + 1) ] dx
= ∫ [ ( cosx + cosx + sinx - sinx) / (2cosxsinx + 2) ] dx
= ∫ [ ( cosx + sinx) / (2cosxsinx + 2) ] dx + ∫ [ ( cosx - sinx) / (2cosxsinx + 2) ] dx
= - ∫ [ (cosx + sinx)/( -3 - 2cosxsinx + cos²x + sin²x ) ] dx + ∫ [ ( cosx - sinx) / (2cosxsinx + 1 + cos²x + sin²x ) ] dx
= - ∫ [ (cosx + sinx)/( -3 + (cosx - sinx)² ) ] dx + ∫ [ ( cosx - sinx)/ ( 1 + ( cosx + sinx)² ) ] dx
= - ∫ [ 1 /( -3 + (sinx - cosx )² ) ] d(sinx - cosx) + ∫ [ 1/ ( 1 + (sinx + cosx)² ) ] d(sinx + cosx)
= - ∫ [ 1/( -3 + (sinx - cosx )² ) ] d(sinx - cosx) + ∫ [ 1/ ( 1 + (sinx + cosx)² ) ] d(sinx + cosx)
= - ∫ [ 1/( -3 + t² ) ] dt + ∫ [ 1/ ( 1 + u² ) ] du
= ( 1/√3 ) ln | (t + √3) / (t - √3) | + arctgu + C
= ( 1/√3 ) ln | (sinx - cosx + √3) / (sinx - cosx - √3) | + arctg(sinx + cosx) + C
Attachments:
pitu9874:
Thanks for your help
Answered by
0
log (sin2x + 2) + c .
Similar questions