Math, asked by mou72398, 4 months ago

solve this indices or( power and exponent) math ​

Attachments:

Answers

Answered by allysia
3

Answer:

3

Rules used:

  • \\\tt ( x^{b})^{a} =  x^{ab}
  • \\\tt x^{a} * x^{b} = x^{a+b}
  • \\\tt \dfrac{x^{a}}{x^{b}}  = x^{a-b}

Step-by-step explanation:

 \dfrac{ {3}^{n}  \times  {9}^{n + 1} } { {3}^{n - 1}  \times  {9}^{n - 1} }  \\  =   \dfrac{ {3}^{n}  \times  {3}^{2n + 2} } { {3}^{n - 1}  \times  {3}^{2n - 2} }  \\ =  \dfrac{ {3}^{n  + 2n+ 2} } { {3}^{n - 1 + 2n + 2}  }  \\ = \dfrac{ {3}^{3n+ 2} } { {3}^{3n + 1}  }  \\ =   {3}^{3n + 2 - 3n - 1} \\ =  {3}^{1}  = 3

Similar questions