Math, asked by parthivlakhani, 9 months ago

solve this inequality:

|x-1| + |x-2| + |x-3| ≥ 6​

Answers

Answered by shreeganeshsneha
1

Answer:

Here the change point are x = 1 , 2 , 3

Hence we consider the following case 

(I)   x < 1

(II) 1 < x < 2

(III) 2 < x < 3

(IV) x > 3

case (I) x < 1

-(x - 1)  - ( x - 2) - (x - 3) ≥ 3 

-3x + 6 ≥6  or -3x ≥ 0 ∴ x ≥\, 0 

Which is < 1  and hence the solution 

case (II) 2 ≥ x <3 

(x - 1)  - ( x - 2) - (x - 3) ≥ 3 

-3x + 6 ≥6  or -x ≥ 2  x ≥\, -2

This does not satisfy given condition of case (II)  Hence no solution 

case (III) 2 ≥ x <3 

(x - 1)  - ( x - 2) - (x - 3) ≥ 3 

 x ≥\, 6

This does not satisfy given condition of case (III)  Hence no solution 

case (IV) x ≥3 

(x - 1)  - ( x - 2) - (x - 3) ≥ 3 

 x ≥\, 14 or  x ≥\, 4

This does not satisfy given condition of case (III)  Hence no solution 

Thus the required solution by case I are IV  are x ≥\, 0 or x ≥\, 4

plzz Mark me as brainliest

Similar questions