Math, asked by CeceBisht, 10 months ago

solve this inequation ASAP​

Attachments:

Answers

Answered by Anonymous
33

\huge\bf{\red{\overbrace{\underbrace{\purple{Given:}}}}}

12+1\dfrac{5}{6}x ≤ 5  + 3x

\huge\bf{\red{\overbrace{\underbrace{\purple{To\:\:Find:}}}}}

★Set of possible values of x.

\huge\bf{\red {\overbrace{\underbrace{\purple{Answer:}}}}}

We have,

\implies 12+1\dfrac{5}{6}x ≤ 5

\implies 12+\dfrac{11x}{6}≤ 5

\implies 12-5 ≤ 3x - \dfrac{11x}{6}

\implies 7 ≤ \dfrac{18x - 11x }{6}

\implies 7 ≤ \dfrac{7x}{6}

\implies x ≥ \dfrac{6\times 7}{7}

\implies x ≥ \dfrac{6\times \cancel{7}}{\cancel{7}}

{\underline{\boxed{\purple{.\degree . x ≥ 6 }}}}

Therefore x can sustain all values greater than Or equal to 6 .So,

\huge\green{\boxed{\red{x \epsilon [6, \infty) }}}

Similar questions