Math, asked by Anonymous, 6 months ago

Solve this integral​

Attachments:

Answers

Answered by shadowsabers03
19

Given,

\displaystyle\longrightarrow I=\int e^{2\log\cot x}\ dx

Since e^{b\log a}=a^b,

\displaystyle\longrightarrow I=\int \cot^2x\ dx

Since \csc^2x-\cot^2x=1,

\displaystyle\longrightarrow I=\int(\csc^2x-1)\ dx

\displaystyle\longrightarrow I=\int\csc^2x\ dx-\int dx

\displaystyle\longrightarrow\underline{\underline{I=-\cot x-x+c}}

Hence (4) is the answer.

Some Integral Results:-

\displaystyle\int\cos x\ dx=\sin x+c

\displaystyle\int\sin x\ dx=-\cos x+c

\displaystyle\int\sec^2x\ dx=\tan x+c

\displaystyle\int\csc^2x\ dx=-\cot x+c

\displaystyle\int\sec x\tan x\ dx=\sec x+c

\displaystyle\int\csc x\cot x\ dx=-\csc x+c

\displaystyle\int\tan x\ dx=\log|\sec x|+c

\displaystyle\int\cot x\ dx=-\log|\csc x|+c

\displaystyle\int\sec x\ dx=\log|\sec x+\tan x|+c

\displaystyle\int\csc x\ dx=-\log|\csc x+\cot x|+c

Answered by Anonymous
2

Answer:

\large\mathbb{\underbrace\purple{ANSWER}}

Given,

\displaystyle\longrightarrow I=\int e^{2\log\cot x} dx⟶I=∫e2logcotx dx

Since e^{b\log a}=a^b,ebloga=ab,

\displaystyle\longrightarrow I=\int \cot^2x\ dx⟶I=∫cot2x dx

Since \csc^2x-\cot^2x=1,csc2x−cot2x=1,

\displaystyle\longrightarrow I=\int(\csc^2x-1)\ dx⟶I=∫(csc2x−1) dx

\displaystyle\longrightarrow I=\int\csc^2x\ dx-\int dx⟶I=∫csc2x dx−∫dx

\displaystyle\longrightarrow\underline{\underline{I=-\cot x-x+c}}⟶I=−cotx−x+c

Hence (4) is the answer.

Some Integral Results:-

\displaystyle\int\cos x\ dx=\sin x+c∫cosx dx=sinx+c

\displaystyle\int\sin x\ dx=-\cos x+c∫sinx dx=−cosx+c

\displaystyle\int\sec^2x\ dx=\tan x+c∫sec2x dx=tanx+c

\displaystyle\int\csc^2x\ dx=-\cot x+c∫csc2x dx=−cotx+c

\displaystyle\int\sec x\tan x\ dx=\sec x+c∫secxtanx dx=secx+c

\displaystyle\int\csc x\cot x\ dx=-\csc x+c∫cscxcotx dx=−cscx+c</p><p>\displaystyle\int\tan x\ dx=\log|\sec x|+c∫tanx dx=log∣secx∣+c

\displaystyle\int\cot x\ dx=-\log|\csc x|+c∫cotx dx=−log∣cscx∣+c</p><p>\displaystyle\int\sec x\ dx=\log|\sec x+\tan x|+c∫secx dx=log∣secx+tanx∣+c</p><p>\displaystyle\int\csc x\ dx=-\log|\csc x+\cot x|+c∫cscx dx=−log∣cscx+cotx∣+c

Similar questions