Math, asked by abhijeetvshkrma, 4 months ago

solve this integral

and don't spam ​

Attachments:

sonykumarankit: konse class ka question h??
abhijeetvshkrma: class 12th
abhijeetvshkrma: integral chapter
sonykumarankit: oooo

Answers

Answered by MrImpeccable
2

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

To Integrate:

  •  \dfrac{x^3}{\sqrt{1-x^2}} \\

Solution:

 \displaystyle \implies \int \dfrac{x^3}{\sqrt{1-x^2}}dx \\\\\implies \int x^2\dfrac{d}{dx}\left(-\sqrt{1-x^2} \right)dx \\\\\implies -x^2\sqrt{1-x^2} + \int \dfrac{d}{dx}(x^2)\sqrt{1-x^2}dx \\\\\implies -x^2\sqrt{1-x^2} + \int 2x \sqrt{1-x^2}dx \\\\\implies -x^2\sqrt{1-x^2} + \int \dfrac{d}{dx}\left(-\dfrac{2}{3}(1-x^2)^{\frac{3}{2}}\right)dx \\\\\implies -x^2\sqrt{1-x^2} -\dfrac{2}{3}(1-x^2)^{\frac{3}{2}} + C \\\\\implies \sqrt{1-x^2} \left(-x^2 -\dfrac{2}{3}(1-x^2)\right) + C \\\\\implies \sqrt{1-x^2} \left(-\dfrac{3x^2}{3} -\dfrac{2}{3} + \dfrac{2x^2}{3}\right) + C \\\\\implies \sqrt{1-x^2} \left(-\dfrac{x^2}{3} -\dfrac{2}{3}\right) + C \\\\\bold{\implies \int \dfrac{x^3}{\sqrt{1-x^2}}dx \:=\: -\dfrac{1}{3}(x^2+2)\sqrt{1-x^2} + C} \\\\

Hope it helps!!!


Anonymous: Nyc explaination
abhijeetvshkrma: thanks bro, itni mehnat karne k liye
MrImpeccable: Np bro!!
IdyllicAurora: Great !
MrImpeccable: :)
Answered by Anonymous
4

Answer

solved see the answer

Attachments:

Anonymous: behn Kya answer diya hai I think yeah tujhe khudko bhe samjh nhi aa raha hoga
Anonymous: xD
Similar questions