Math, asked by Anonymous, 5 months ago

Solve this integral ASAP??​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \int \frac{dx}{1 -  \cos(x) }  \\

 =  \int \frac{dx}{1 -  \frac{1 -  \tan^{2}  ( \frac{x}{2} ) }{1 +  \tan^{2} ( \frac{x}{2} ) } }  \\

 =  \int \frac{ \sec^{2} ( \frac{x}{2} ) dx}{2 \tan ^{2} ( \frac{x}{2} ) }  \\

let \:  \:  \tan( \frac{x}{2} )  = y \\  \implies \frac{1}{2}  \sec^{2} ( \frac{x}{2} ) dx = dy

 =  \int \frac{dy}{y^{2} }  \\

 =  -  \frac{1}{y}  + c \\

  =  -  \frac{1}{ \tan( \frac{x}{2} ) }  + c \\

Similar questions