Solve this integral asap
Answers
Question
By using ILATE concept :
x² is an algebraic term so it's a first function and e^x is a second function.
By applying Product form of integration we will solve Question :-
By using ILATE concept :
x² is an algebraic term so it's a first function and e^x is a second function.
By applying Product form of integration we will solve Question :-
\sf\boxed{\large \displaystyle\int \: u vdx = u\int \: vdx - \displaystyle \int\bigg( \dfrac{d}{dx} u\displaystyle \int \: vdx\bigg)dx}
∫uvdx=u∫vdx−∫(
dx
d
u∫vdx)dx
\large\displaystyle \int {x}^{2} {e}^{x} = {x}^{2}\displaystyle \int {e}^{x} dx - \displaystyle \int(2x. {e}^{x} dx)∫x
2
e
x
=x
2
∫e
x
dx−∫(2x.e
x
dx)
\sf\large= {x}^{2} {e}^{x} - 2 \displaystyle\int \: x. {e}^{x} dx=x
2
e
x
−2∫x.e
x
dx
\sf\large= {x}^{2} {e}^{x} - 2\bigg(x {e}^{x} - \displaystyle \int1. {e}^{x} dx\bigg)=x
2
e
x
−2(xe
x
−∫1.e
x
dx)
\sf\large= {x}^{2} {e}^{x} - 2\bigg(x {e}^{x} - {e}^{x}\bigg )=x
2
e
x
−2(xe
x
−e
x
)
\sf\large= {x}^{2} {e}^{x} - 2x {e}^{x} + 2 {e}^{x}=x
2
e
x
−2xe
x
+2e
x