Math, asked by abhijeetvshkrma, 3 months ago

Solve this integral (√x-√1-x²)²

Don't spam ​

Attachments:

Answers

Answered by Anonymous
0

Answer:

here is answer dear friend

Attachments:
Answered by Anonymous
14

Given Integrand,

 \displaystyle \sf  \int ( \sqrt{x}  -  \sqrt{1 -  {x}^{2} } ) {}^{2} dx

Expanding the above expression as (a - b)²,

 \longrightarrow \displaystyle \sf  \int  \{(\sqrt{x} ) {}^{2} - 2 \sqrt{x(1 -  {x}^{2} }  )  +   (\sqrt{1 -  {x}^{2}} ) {}^{2} \}  dx \\  \\ \longrightarrow \displaystyle \sf  \int  \{x  - 2 \sqrt{x(1 -  {x}^{2} } )+ 1 -  {x}^{2}   \}dx \\  \\ \longrightarrow \displaystyle \sf  \int x dx - 2 \int  \sqrt{x(1 -  {x}^{2} })dx +  \int dx -  \int  {x}^{2}  dx \\  \\   \longrightarrow \displaystyle \sf  \dfrac{ {x}^{2} }{2}  - 2 \int  \sqrt{x(1 -  {x}^{2} })dx  + x -  \dfrac{ {x}^{3} }{3}  + c

The expression can't be integrated further.

Similar questions