Math, asked by PriyanshuPrasad, 10 months ago

Solve this INTEGRATION!!!!

❓❓❓​

Attachments:

Answers

Answered by maheshwaranlupp0yaxy
2

Answer:

Hey mate....

Here is your answer....

Refer the attached picture.

This is be solved by integreation by partial fractions.

-Mähëshwářàñ

Attachments:
Answered by Anonymous
111

♣ Qᴜᴇꜱᴛɪᴏɴ :

\bf{Evaluate\:\::\int \dfrac{x^2}{\left(x^2+4\right)\left(x^2+9\right)}dx}

♣ ᴀɴꜱᴡᴇʀ :

\boxed{\bf{\int \frac{x^2}{\left(x^2+4\right)\left(x^2+9\right)}dx=-\frac{2}{5}\arctan \left(\frac{x}{2}\right)+\frac{3}{5}\arctan \left(\frac{x}{3}\right)+C}}

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\sf{\text { Take the partial fraction of } \dfrac{x^{2}}{\left(x^{2}+4\right)\left(x^{2}+9\right)}:-\dfrac{4}{5\left(x^{2}+4\right)}+\dfrac{9}{5\left(x^{2}+9\right)}}

=\int \:-\dfrac{4}{5\left(x^2+4\right)}+\dfrac{9}{5\left(x^2+9\right)}dx

\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx

=-\int \dfrac{4}{5\left(x^2+4\right)}dx+\int \dfrac{9}{5\left(x^2+9\right)}dx

\int \dfrac{4}{5\left(x^{2}+4\right)} d x=\dfrac{2}{5} \arctan \left(\dfrac{x}{2}\right)\\\\\\\int \dfrac{9}{5\left(x^{2}+9\right)} d x=\dfrac{3}{5} \arctan \left(\dfrac{x}{3}\right)

=-\dfrac{2}{5}\arctan \left(\dfrac{x}{2}\right)+\dfrac{3}{5}\arctan \left(\dfrac{x}{3}\right)

\tt{Add\:a\:constant\:to\:the\:solution}

\boxed{\bf{=-\dfrac{2}{5}\arctan \left(\dfrac{x}{2}\right)+\dfrac{3}{5}\arctan \left(\dfrac{x}{3}\right)+C}}

Similar questions