Math, asked by monjyotiboro, 4 days ago

Solve this integration​::

:-)

kindly dont spam

Attachments:

Answers

Answered by amansharma264
2

EXPLANATION.

⇒ ∫(xdx)/(x - 1)²(x + 2).

As we know that,

If coefficient of Numerator < Denominator then,

Apply partial fractions method in this equation, we get.

⇒ ∫(xdx)/(x - 1)²(x + 2). = A/(x - 1) + B/(x - 1)² + C/(x + 2).

⇒ x = A(x - 1)(x + 2) + B(x + 2) + C(x - 1)².

Put the value of x = 1 in the equation, we get.

⇒ 1 = A(1 - 1)(1 + 2) + B(1 + 2) + C(1 - 1)².

⇒ 1 = 0 + B(3) + 0.

⇒ 1 = 3B.

⇒ B = 1/3.

Put the value of x = - 2 in the equation, we get.

⇒ - 2 = A(- 2 - 1)(- 2 + 2) + B(- 2 + 2) + C(- 2 - 1)².

⇒ - 2 = 0 + 0 + C(- 3)².

⇒ - 2 = 9C.

⇒ C = - 2/9.

Put the value of x = 0 in the equation, we get.

⇒ 0 = A(0 - 1)(0 + 2) + B(0 + 2) + C(0 - 1)².

⇒ 0 = A(- 1)(2) + B(2) + C(- 1)².

⇒ 0 = -2A + 2B + C.

Put the value of b = 1/3 and c = - 2/9 in the equation, we get.

⇒ 0 = - 2A + 2(1/3) + (-2/9).

⇒ 0 = - 2A + (2/3) - (2/9).

⇒ 0 = [(- 18A) + 6 - 2]/(9).

⇒ 0 = - 18A + 6 - 2.

⇒ 0 = - 18A + 4.

⇒ 18A = 4.

⇒ 9A = 2.

⇒ A = 2/9.

Values of A = 2/9, B = 1/3 and C = -2/9.

Put the values in the equation, we get.

⇒ ∫(xdx)/(x - 1)²(x + 2). = ∫A/(x - 1)dx + ∫B/(x - 1)²dx + ∫C/(x + 2)dx.

⇒ ∫2/9(x - 1) dx + ∫dx/3(x - 1)² + ∫-2/9(x + 2) dx.

⇒ 2/9㏑|(x - 1)| + 1/3㏑|(x - 1)² - 2/9㏑|(x + 2)| + C.

⇒ ∫(xdx)/(x - 1)²(x + 2) = 2/9㏑|(x - 1)| + 1/3㏑|(x - 1)² - 2/9㏑|(x + 2)| + C.

                                                                                                                     

MORE INFORMATION.

Integration by parts.

(1) If u and v are two functions of x then,

∫(u.v)dx = u(∫vdx) - ∫[(du/dx).(∫vdx)]dx.

From the first letter of the word.

I = Inverse trigonometric functions.

L = Logarithmic functions.

A = Algebraic functions.

T = Trigonometric functions.

E = Exponential functions.

We get a word = ILATE.

First arrange the functions in the order according to letters of this word and then integrate by parts.

(2) If the integral is of the form,

∫eˣ[f(x) + f'(x)]dx = eˣf(x) + c.

(3) If the integral is of the form,

∫[xf'(x) + f(x)]dx = x f(x) + c.

Similar questions