Math, asked by kafleniraj, 2 months ago

solve this integration quickly

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \frac{ {x}^{n - 1} }{ \sqrt{ {a}^{n} + {x}^{n} } } \: dx

To solve this integral, we use method of Substitution.

\red{\rm :\longmapsto\:Put \:  \sqrt{ {a}^{n}  +  {x}^{n} }  = y}

\red{\rm :\longmapsto\: \: { {a}^{n}  +  {x}^{n} }  =  {y}^{2} }

On differentiating both sides, w. r. t. x, we get

\red{\rm :\longmapsto\: \: \dfrac{d}{dx}({ {a}^{n}  +  {x}^{n} })  = \dfrac{d}{dx} {y}^{2} }

\red{\rm :\longmapsto\: \: \dfrac{d}{dx}{ {a}^{n}  +  \dfrac{d}{dx}{x}^{n} }  =2y \dfrac{dy}{dx}}

\red{\rm :\longmapsto\: \:  {nx}^{n - 1}  =2y \dfrac{dy}{dx}}

\red{\rm :\longmapsto\: {x}^{n - 1}dx = \dfrac{2y}{n}dy}

Now, on substituting all the above values, we get

\rm \:  =  \:  \:  \dfrac{2}{n} \displaystyle\int\rm  \frac{y \: dy}{y}

\rm \:  =  \:  \:  \dfrac{2}{n} \displaystyle\int\rm  dy

\rm \:  =  \:  \:  \dfrac{2}{n}  \: y \:  +  \: c

\rm \:  =  \:  \:  \dfrac{2 \sqrt{ {a}^{n}  +  {x}^{n} } }{n}  \ \:  +  \: c

Hence,

\rm :\longmapsto\:\displaystyle\int\bf  \frac{ {x}^{n - 1} }{ \sqrt{ {a}^{n} + {x}^{n} } } \: dx

is

\bf \:  =  \:  \:  \dfrac{2 \sqrt{ {a}^{n}  +  {x}^{n} } }{n}  \ \:  +  \: c

Additional Information :-

\displaystyle\int\rm sinx \: dx \:  =  \:  -  \: cosx \:  +  \: c

\displaystyle\int\rm cosx \: dx \:  =  \:  \: sinx \:  +  \: c

\displaystyle\int\rm tanx \: dx \:  =  \:  \: log \: secx \:  +  \: c

\displaystyle\int\rm cotx \: dx \:  =  \:  \: log \: sinx \:  +  \: c

\displaystyle\int\rm cosecx \: dx \:  =  \:   - \: log \: (cosecx  - cotx)\:  +  \: c

\displaystyle\int\rm secx \: dx \:  =  \: \: log \: (secx   +  tanx)\:  +  \: c

Similar questions