Math, asked by seanlacourforum, 16 hours ago

Solve this intrigation?

Attachments:

Answers

Answered by anindyaadhikari13
5

\textsf{\large{\underline{Solution}:}}

We have to evaluate the given integral.

 \displaystyle \rm =  \int \dfrac{ \sin(2x) }{1 +  \sin^{2} (x) }  \: dx

 \displaystyle \rm =  \int \dfrac{2 \sin(x)  \cos(x) }{1 +  \sin^{2} (x) }  \: dx

Now let us assume that:

 \rm \longrightarrow u = 1 +  { \sin}^{2}(x)

 \rm \longrightarrow  \dfrac{du}{dx}  = 2 \sin(x) \cos(x)

 \rm \longrightarrow  dx =  \dfrac{1}{2 \sin(x) \cos(x)  }  \: du

Therefore, the integral becomes:

 \displaystyle \rm =  \int \dfrac{1}{u}  \: du

 \displaystyle \rm = \ln(u)  + C

 \displaystyle \rm = \ln(1 +  sin^{2}x )  + C

Therefore:

 \displaystyle \rm \longrightarrow  \int \dfrac{ \sin(2x) }{1 +  \sin^{2} (x) }  \: dx =  \ln(1 +  sin^{2}x )  + C

★ Which is our required answer.

\textsf{\large{\underline{Know More}:}}

\boxed{\begin{array}{c|c}\bf f(x)&\bf\displaystyle\int\rm f(x)\:dx\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \rm k&\rm kx+C\\ \\ \rm sin(x)&\rm-cos(x)+C\\ \\ \rm cos(x)&\rm sin(x)+C\\ \\ \rm{sec}^{2}(x)&\rm tan(x)+C\\ \\ \rm{cosec}^{2}(x)&\rm-cot(x)+C\\ \\ \rm sec(x)\  tan(x)&\rm sec(x)+C\\ \\ \rm cosec(x)\ cot(x)&\rm-cosec(x)+C\\ \\ \rm tan(x)&\rm log(sec(x))+C\\ \\ \rm\dfrac{1}{x}&\rm log(x)+C\\ \\ \rm{e}^{x}&\rm{e}^{x}+C\\ \\ \rm x^{n},n\neq-1&\rm\dfrac{x^{n+1}}{n+1}+C\end{array}}

Similar questions