Math, asked by Anonymous, 1 year ago

Solve this limit question.

Attachments:

Answers

Answered by waqarsd
1

lt \:  \: x =  >  \infty  \\  \\ lt \:  \frac{1}{x}  =  > 0 \\  \\ now \\  \\ lt \:  \: x =  >  \infty  \:  \:  \:  \:  \frac{x}{1 +  {x}^{2}  +  {x}^{4} }  \\  \\ divide \: with \:  {x}^{4}  \\  \\ lt \:  \: x =  >  \infty  \:  \:  \:  \frac{ \frac{1}{ {x}^{3} } }{ \frac{1}{ {x}^{4} }  +  \frac{1}{ {x}^{2} }  + 1}  \\  \\   = \frac{0}{0 + 0 + 1}  \\  \\  = 0

hope it helps

Answered by siddhartharao77
7

Answer:

0

Step-by-step explanation:

Given:\frac{r}{1+r^2 + r^4}

Divide the numerator and denominator by r⁴

\Longrightarrow \frac{\frac{r}{r^4}}{\frac{1}{r^4}+\frac{r^2}{r^4}+\frac{r^4}{r^4}}

\Longrightarrow \frac{\frac{1}{r^3}}{\frac{1}{r^4}+\frac{1}{r^2}+1}

\Longrightarrow\frac{ \lim_{r\to\infty} (\frac{1}{r^3})}{\lim_{r\to\infty} (\frac{1}{r^4}+\frac{1}{r^2} + 1)}

(i)

\Longrightarrow\lim_{r\to\infty} \frac{1}{r^3}

\Longrightarrow0

(ii)

\Longrightarrow\lim_{r \to \infty} (\frac{1}{r^4} + \frac{1}{r^2} + 1)

\Longrightarrow 0 + 0 + 1

\Longrightarrow 1

On simplifying, we get

\Longrightarrow \frac{0}{1}

\Longrightarrow\boxed{0}

Hope it helps!


siddhartharao77: Welcome :)
Similar questions