Math, asked by rohan200329, 1 year ago

solve this limit value.............

Attachments:

Answers

Answered by DamienVesper
1

Answer:

1/4

Step-by-step explanation:

Lim (√(x+4) -2) / x

    =(√(x+4) -2) * (√(x+4)+2) / x * (√(x+4)+2)

    =(x+4-4) / (x * (√(x+4)+2))

    = x/x * (√(x+4)+2)

    = 1/√(x+4)+2

putting x=0

   = 1/ √4 +2

   =1/4

Answered by Anonymous
5

Solution 1:

We need to evaluate the given limit:

  \sf\implies \lim  \limits_{ x \to 0} \dfrac{ \sqrt{x + 4} - 2 }{x}

If we directly substitute the limits, we get:

{  \sf\implies \dfrac{ \sqrt{0 + 4} - 2 }{0}  =  \dfrac{ \sqrt{2} -  \sqrt{2}  }{0}  =   \boxed{\dfrac{0}{0}} }

this is an indeterminate quantity, therefore substitution method failed to evaluate our limit. Let's solve it using the method of rationalisation.

  \sf\implies \lim  \limits_{ x \to 0} \dfrac{ \sqrt{x + 4} - 2 }{x}  \times  \dfrac{ \sqrt{x + 4} + 2 }{ \sqrt{x + 4} + 2 }

  \sf\implies \lim  \limits_{ x \to 0}  \dfrac{(\sqrt{x + 4} - 2)( \sqrt{x + 4} + 2) }{x( \sqrt{x + 4} + 2) }

  \sf\implies \lim  \limits_{ x \to 0}  \dfrac{(\sqrt{x + 4})^{2}  -  {(2)}^{2} }{x( \sqrt{x + 4} + 2) }

  \sf\implies \lim  \limits_{ x \to 0}  \dfrac{{x + 4}  -  4}{x( \sqrt{x + 4} + 2) }

  \sf\implies \lim  \limits_{ x \to 0}  \dfrac{ \not x }{ \not x( \sqrt{x + 4} + 2) }

  \sf\implies \lim  \limits_{ x \to 0}  \dfrac{ 1}{ \sqrt{x + 4} + 2 }

Now directly substituting the limits:

  \sf\implies \dfrac{ 1}{ \sqrt{0 + 4} + 2 }

  \sf\implies \dfrac{ 1}{2 + 2 }

  \sf\implies \dfrac{ 1}{4}

So the required answer is:

 \boxed{  \tt\lim  \limits_{ x \to 0} \dfrac{ \sqrt{x + 4} - 2 }{x}  =  \dfrac{1}{4} }

 \rule{280}{1}

Solution 2:

We need to prove that the given limit is equal to 1/2. Let's start will LHS!

 \sf\implies \lim\limits_{x\to \infty} (\sqrt{x^2+x} - x)

If we directly substitute the limits, we get:

\sf{\implies  (\sqrt{ \infty^2+ \infty } -  \infty )  = \boxed{  \infty  -  \infty }}

this is an indeterminate quantity. Therefore substitution method fails to evaluate this limit. We need to use another method.

Consider LHS:

\sf\implies \lim\limits_{x\to \infty} (\sqrt{x^2+x} - x)

Now, rationalise the denominator.

\sf{\implies \lim\limits_{x\to \infty} (\sqrt{x^2+x} - x)  \times  \dfrac{( \sqrt{ {x}^{2} + x } + x) }{ (\sqrt{ {x}^{2} + x } + x) } }

\sf{\implies \lim\limits_{x\to \infty} \dfrac{(\sqrt{x^2+x} - x) ( \sqrt{ {x}^{2} + x } + x) }{ (\sqrt{ {x}^{2} + x } + x) } }

\sf{\implies \lim\limits_{x\to \infty} \dfrac{(\sqrt{x^2+x})^{2}  -  {(x)}^{2}  }{ (\sqrt{ {x}^{2} + x } + x) } }

\sf{\implies \lim\limits_{x\to \infty} \dfrac{ \not x^2+x  -   \not{x}^{2}  }{ \sqrt{ {x}^{2} + x } + x} }

\sf{\implies \lim\limits_{x\to \infty} \dfrac{ \not x}{ \not x( \sqrt{1 +  \frac{1}{x}  } + 1)} }

\sf{\implies \lim\limits_{x \to \infty} \dfrac{1}{\sqrt{1 +  \frac{1}{x}  } + 1} }

Now substituting the limits:

\sf{\implies  \dfrac{1}{\sqrt{1 +  \frac{1}{ \infty}  } + 1} }

\sf{\implies  \dfrac{1}{\sqrt{1 + 0} + 1} }

\sf{\implies  \dfrac{1}{1+ 1} }

 \sf{\implies  \dfrac{1}{2} }

Which is equal to RHS.

Hence the required result is proved that:

 \boxed{ \tt\lim\limits_{x\to \infty} (\sqrt{x^2+x} - x)  =  \dfrac{1}{2} }

Similar questions