Solve this log question
If a2 + b2 = 7ab, show that log (a+b)/3 = 1/2(log a+log b)
Answers
Gɪᴠᴇɴ :-
- a² + b² = 7ab
Tᴏ SHᴏw :-
- log (a+b)/3 = 1/2(log a+log b) ?
Sᴏʟᴜᴛɪᴏɴ :-
→ a² + b² = 7ab
Adding 2ab both sides,
→ a² + b² + 2ab = 7ab + 2ab
→ (a + b)² = 9ab
Square - Root Both sides,
→ (a + b) = 3(ab)^(1/2)
Taking log both sides now,
→ log(a + b) = log[ 3(ab)^(1/2)]
using log(x * y) = log(x) + log(y) in LHS now,
→ log(a + b) = log(3) + log(ab)^(1/2)
→ log(a + b) - log(3) = log(ab)^(1/2)
using log(x) - log(y) = log(x / y) in RHS Now,
→ log(a + b / 3) = log(ab)^(1/2)
→ log(a + b / 3) = (1/2)*log(ab)
Again using using log(x * y) = log(x) + log(y) in LHS now,
→ log (a+b)/3 = 1/2(log a+log b) (Hence, Proved).
- a² + b² = 7ab
- log (a+b)/3 = 1/2(log a+log b)
↪a² + b² = 7ab
↪a² + b² + 2ab = 7ab + 2ab {Adding 2ab to both sides}
↪(a + b)² = 9ab
↪(a + b) = 3(ab)^½ {squaring both roots}
↪log(a+b) = log[3 (ab)^½] {Taking log both sides}
↪log (a+b) - log 3 = log(ab)^½
↪log(a+b/3) = log(ab^½)
↪log(a+b/3) = ½ × log(ab)