Math, asked by MridulSinghJadaun123, 2 months ago

solve this logarithm question​

Attachments:

Answers

Answered by umeshvarshney061
1

Answer:

 \frac{n}{2} (n + 1)

Step-by-step explanation:

 log_{a} \:  {b}^{n} \:  = n \:  log_{a} \: b \\  log_{a} \: a = 1

 log_{2}2  +  log_{2}  \: {2}^{2}   +  log_{2} \:  {2}^{3 }  + ....... +  log_{2} \:  {2}^{n}   \\  =  log_{2}2 + 2 log_{2}2 + 3 log_{2}2 + ........ + n log_{2}2 \\  = 1 + 2 + 3 + ........ + n \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \: first \: term \: = 1 \\ common \: difference \:  = 1 \\ last \: term \:  =  \: n

 s_{n} =  \frac{n}{2} (first \: term \:  + last \: term) \\  =  \frac{n}{2} (1 + n) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Similar questions