Math, asked by sonusharma45, 7 months ago

solve this mate.plzz ​

Attachments:

Answers

Answered by anindyaadhikari13
4

\star\:\:\:\bf\large\underline\blue{Given\:To\:Prove:-}

  •  \frac{1}{1 +  \sin \theta }  +  \frac{1}{1 -  \sin \theta }  =  \small2 { \sec}^{2}  \theta

\star\:\:\:\bf\large\underline\blue{Proof:-}

\bf\underline\blue{Taking\:LHS:-}

 \frac{1}{1 +  \sin \theta }  +  \frac{1}{1 -  \sin \theta }

 =  \frac{1 -  \sin  \theta + 1  +  \sin \theta  }{(1 +  \sin \theta)(1 -  \sin \theta)  }

 =  \frac{2}{1 -  { \sin }^{2}  \theta}

Now, we know that,

 \sin^{2} \theta +  { \cos}^{2} \theta = 1

So,

  { \cos}^{2} \theta = 1 -  \sin^{2}  \theta

So,

   \frac{2}{1 -  { \sin }^{2}  \theta}

 =  \frac{2}{ { \cos }^{2} \theta }

 = 2  \: { \sec}^{2}  \theta

\bf\underline\blue{Taking\:RHS:-}

 = 2 { \sec}^{2}  \theta

\bf\large\blue{Therefore,}

\bf\large\blue{LHS=RHS,Proved.}

Answered by tennetiraj86
4

Answer:

answer for the given problem is given

Attachments:
Similar questions