Math, asked by sonusharma45, 6 months ago

solve this mate plzz ​

Attachments:

Answers

Answered by kaushik05
10

To prove :

 \star \: (1 +  { \tan}^{2}  \theta)(1 +  { \cot}^{2}  \theta) =  \frac{1}{ { \sin}^{2} \theta -  { \sin}^{4} \theta   }  \\

Taking LHS ,

 \implies \: (1 +  { \tan}^{2}  \theta)(1 +  { \cot}^{2}  \theta) \\  \\  \implies \: ( { \sec}^{2}  \theta)(  {  \cosec}^{2}  \theta) \\  \\  \implies \: ( \frac{1}{ { \cos}^{2} \theta } )( \frac{1}{ { \sin}^{2}  \theta} ) \\  \\ \implies \:  (\frac{1}{1 -  { \sin}^{2}  \theta} )( \frac{1}{ { \sin}^{2} \theta } ) \\  \\  \implies \:  \frac{1}{ { \sin}^{2} \theta -  { \sin}^{4}  \theta }

LHS = RHS

  \huge \blue{\mathfrak{proved}}

Formula used :

 \star \:  { \sin}^{2}  \alpha  +  { \cos}^{2}  \alpha  = 1 \\  \\  \star \:  { \sec}^{2}  \alpha   -  { \tan}^{2}  \alpha  = 1 \\  \\  \star \:  { \cosec}^{2}  \alpha  -  { \cot}^{2}  \alpha  = 1 \\  \\  \star \:  \cosec \alpha  =  \frac{1}{ \sin \alpha }  \\  \\  \star \:  \sec \alpha  =  \frac{1}{ \cos \alpha }

Answered by Anonymous
3

Taking LHS :

 \tt \implies (1 +  {tan}^{2}  \theta)(1 -  {cot}^{2}  \theta)

\tt \implies( {sec}^{2}  \theta)( {cosec}^{2}  \theta)

 \tt \implies (\frac{1}{ {cos}^{2}  \theta} )( \frac{1}{ {sin}^{2}  \theta} )

\tt \implies( \frac{1}{1 -  {sin}^{2}  \theta} ) (\frac{1}{ {sin}^{2} \theta } )

 \tt \implies \frac{1}{ {sin}^{2}  \theta -  {sin}^{4}  \theta }

 \therefore LHS = RHS

Hence proved

Remmember :

  \tt{sin}^{2} (x) +  {cos}^{2} (x) = 1

 \tt 1 +  {tan}^{2} (x) =  {sec}^{2} (x)

 \tt 1 +  {cot}^{2} (x) =  {cosec}^{2} (x)

 \tt \frac{1}{cos(x)} = sec(x)

 \tt \frac{1}{sin(x)} = cosec(x)

______________________ Keep Smiling ☺️

Similar questions