Math, asked by verong, 1 year ago

solve this matrices ​

Attachments:

Answers

Answered by brunoconti
14

Answer:

Step-by-step explanation:

Attachments:
Answered by Seafairy
51

x=2,y=1,z=-1

Question :

Find \left[\begin{array}{ccc}-5&1&3\\7&1&-5\\1&-1&1\end{array}\right] \left[\begin{array}{ccc}1&1&2\\3&2&1\\2&1&3\end{array}\right] and  \: hence \: solve\\  x+y+2=1\\3x+2y+z=7\\2x+y+3z=2

Solution :

\left[\begin{array}{ccc}-5&1&3\\7&1&-5\\1&-1&1\end{array}\right] \left[\begin{array}{ccc}1&1&2\\3&2&1\\2&1&3\end{array}\right]

Multiply the matrices,\left[\begin{array}{ccc}(-5\times 1)+(1\times 3)+(3\times 2) & - (5\times 1) + (1\times2)+(3\times 1)&(-5\times 2)+(1\times 1)+(3\times 3)\\(7\times1)+(1\times3)-(5 \times2)&(7\times1)+(1\times2)-(5\times1)&(7\times2)+(1\times1)-(5\times3)\\(1\times1)-(1\times3)+(1\times2)&(1\times1)-(1\times2)+(1\times1)&(1\times2)-(1\times1)+(1\times3)\end{array}\right]

\implies\left[\begin{array}{ccc}(-5+3+6)&(-5+2+3) &(-10+1+9)\\(7+3-10)&(7+2-5)&(14+1-15)\\(1-3+2) &(1-2+1) &(2-1+3)\end{array}\right]

\implies\left[\begin{array}{ccc}4&0&0\\0&4&0\\0&0&4\end{array}\right]\implies4\times \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]  = 4I

Thus,

\implies\left[\begin{array}{ccc}-5&1&3\\7&-1 &-5\\1&-1 & 1 \end{array}\right] \left[\begin{array}{ccc}1&1&2\\3&2&1\\2&1&3\end{array}\right] = 4I...…(1)

\implies x+y+2z=1\\\implies3x+2y+z=7\\\implies2x+y+3z=2

\implies\left[\begin{array}{ccc}1&1&2\\3&2&1\\2&1&3 \end{array}\right] \left[\begin{array}{c}x\\y\\z \end{array}\right] = \left[\begin{array}{c}1\\7\\2\end{array}\right]

\implies\left[\begin{array}{ccc}-5&1&3\\7&1&-5\\1&-1&1\end{array}\right] \left[\begin{array}{ccc}1&1&2\\3&2&1\\2&1&3\end{array}\right] \left[\begin{array}{c}x \\y \\z\end{array}\right] = \left[\begin{array}{ccc}-5&1 &3 \\7&1&-5\\1&-1&1\end{array}\right]\left[\begin{array}{c}1\\7\\2\end{array}\right]

Substitute (1)  

\implies4I \left[\begin{array}{c}x\\y\\z\end{array}\right] =\left[\begin{array}{c}(-5\times1 ) +(1\times7)+ (3\times2)\\(7\times1) +(1\times 7) - (5\times2)\\(1\times1) -(1\times 7)+(1\times 2)\end{array}\right]

\implies4I \left[\begin{array}{c}x\\y\\z\end{array}\right] =\left[\begin{array}{c}(-5+7+6)\\(7+7-10 ) \\ (1-7+2) \end{array}\right]

\implies4 \left[\begin{array}{c}x\\y\\z\end{array}\right] =\left[\begin{array}{c}8\\4\\-4 \end{array}\right]

\implies\left[\begin{array}{c}x\\y \\z \end{array}\right] =\left[\begin{array}{c}\frac{8}{4}\\ \\ \frac{4}{4}\\ \\\frac{-4}{4} \end{array}\right]

\implies\left[\begin{array}{c}x\\y\\z \end{array}\right] =\left[\begin{array}{c}2\\1\\-1\end{array}\right]

x=2,y=1,z=-1

Multiplication Of Matrices :

To multiply two matrices, the number of columns in the first matrix must be equal to the number of rows in the second matrix. Consider the multiplications of 3\times2   and 3\times2matrices.

\mathtt{(order\:of\:left\:hand\:matrix\times(order\:of\:right\:hand\:matrix)\implies(order\:of\:product\:matrix).}

Matrices are multiplies by multiplying the elements in a row of the first matrix by the elements in a column of the second matrix,and adding the results.

The product of AB can be found if the number of columns of matrix A is equal to the number of rows of matrix B. If the order of matrix A is m\times n and B is n\times pthen the order of AB is m\times p

Similar questions