Math, asked by shashankhc58, 1 month ago

Solve this Matrix problem

NOTE:-
❌NO WRONG ANSWERS❌​

Attachments:

Answers

Answered by MysticalGirl85
278

5.

\sf\small{\green{Given:-}}

\sf\pink A=\begin{bmatrix} 2&4 \\3&2\end{bmatrix},

\sf\pink B =\begin{bmatrix}1&3 \\-2&5\end{bmatrix},

\sf\pink C=\begin{bmatrix} -2&5 \\3&4 \end{bmatrix}

\bf\blue{\:To\:Find:-}

  • i) A+B
  • ii) A-B
  • iii) 3A-C
  • iv) AB

\bf\red{Solution:-}

i)A+B

=\begin{bmatrix} 2&4 \\ 3&2\end{bmatrix} +\begin{bmatrix} 1&3 \\ -2&5\end{bmatrix}

=\begin{bmatrix} 2+1&4+3\\ 3+(-2)&2+5\end{bmatrix}

=\begin{bmatrix} 3&7 \\ 1&7\end{bmatrix}

ii)A-B

=\begin{bmatrix} 2&4 \\ 3&2\end{bmatrix} -\begin{bmatrix} 1&3 \\ -2&5\end{bmatrix}

=\begin{bmatrix} 2-1&4-3\\ 3-(-2)&2-5\end{bmatrix}

=\begin{bmatrix} 1&1 \\ 5&-3\end{bmatrix}

iii)3A-C

=3×\begin{bmatrix} 2&4 \\ 3&2\end{bmatrix}-C=\begin{bmatrix} -2&5 \\3&4 \end{bmatrix}

=\begin{bmatrix} 6&8\\9&6 \end{bmatrix}-C=\begin{bmatrix} -2&5 \\3&4 \end{bmatrix}

=\begin{bmatrix} 8&3 \\ 6&2\end{bmatrix}

iv)AB

=\begin{bmatrix} 2&4 \\ 3&2\end{bmatrix} ×\begin{bmatrix} 1&3 \\ -2&5\end{bmatrix}

=\begin{bmatrix} 2×1+4×-2&2×3+4×5\\3×1+2×-2&3×3+2×5\end{bmatrix}

=\begin{bmatrix} -6&26 \\ -1&19\end{bmatrix}

6.

\bf\blue{\:To\:Find:-}

  • AB

\bf\red{Solution:-}

=\begin{bmatrix} 0&-1\\ 0&2\end{bmatrix} +\begin{bmatrix} 3&5 \\ 0&0\end{bmatrix}

=\begin{bmatrix} 0×3+(-1×0)&0×5+(-1×0)\\0×3+2×0&0×5+2×0\end{bmatrix}

=\begin{bmatrix} 0&0\\ 0&0\end{bmatrix}

Similar questions