Math, asked by shivasinghmohan629, 6 hours ago

Solve This : Mods And Stars... Verify that:


\begin{gathered}x {}^{3} +y {}^{3} +z {}^{3} –3xyz \\ = ( \frac{1}{2} ) (x+y+z)[(x–y) {}^{2} +(y–z) {}^{2} +(z–x) {}^{2} ]\end{gathered} x 3 +y 3 +z 3 –3xyz =( 2 1 ​ )(x+y+z)[(x–y) 2 +(y–z) 2 +(z–x) 2 ] ​

Answers

Answered by xxblackqueenxx37
27

 \: \huge\fbox\pink{Søluctiøn}

 \: RHS =  \frac{1}{2} (x + y + z)[ {(x - y)}^{2} +  {(y - z)}^{2}  +  {(z - x)}^{2}  ] \\

 =  \frac{1}{2} (x + y + z) \\

 \: [ {x}^{2} +  {y}^{2}  - 2xy +  {y}^{2} +  {z}^{2} - 2yz +  {z}^{2}   +  {x}^{2}   - 2xz ] \\

 =  \frac{1}{2} (x + y + z)[ {2x}^{2} +  {2y}^{2} +  {2z}^{2}  - 2xy - 2yz - 2zx  ] \\

  = \frac{1}{2} (x + y + z) \times 2 \times [ {x}^{2} +  {y}^{2}  +  {z}^{2}  - xy - yz - zx ] \\

 = (x + y - z)( {x}^{2}  +  {y}^{2} +  {z}^{2}   - xy - yz - zx) \\

 =  {x}^{3}  +  {y}^{3}  +  {z}^{3}  - 3xyz \\

 \:  =  \: LHS

----------------------------------------------

hope it was helpful to you

Similar questions