Solve This : Mods And Stars...
Verify that:
Answers
Question :-
Verify that
x³+y³+z³-3xyz = ½ (x+y+z)[(x-y)²+(y-z)²+(z-x)²]
Solution :-
Required to prove :-
x³+y³+z³-3xyz = ½ ( x+y+z)[(x-y)²+(y-z)²+(z-x)²]
Proof :
Consider RHS;
½ ( x+y+z)[(x-y)²+(y-z)²+(z-x)²]
Identities frequently used :
- (a+b)² = a²+b²+2ab
- (a-b)² = a²+b²-2ab
→
½ (x+y+z) [(x²+y²-2xy)+(y²+z²-2yz)+(x²+z²-2xz)]
½ (x+y+z) [(2x²+2y²+2z²-2xy-2yz-2xz)]
½ (x+y+z) 2 [x²+y²+z²-xy-yz-xz]
(x+y+z) (x²+y²+z²-xy-yz-xz)
x(x²+y²+z²-xy-yz-xz)+y(x²+y²+z²-xy-yz-xz)+z(x²+y²+z²-xy-yz-xz)
(x³+xy²+xz²-x²y-xyz-x²z)+(x²y+y³+yz²-xy²-y²x-xyz)+(x²z+y²z+z³-xyz-yz²-xz² )
→ x³+y³+z³-3xyz
Hence,
LHS = RHS
Bonus tip :-
If a + b + c = 0 then,
a³ + b³ + c³ = 3abc ✓
This can be used to solve many questions <<
Answer:
☆Answered by Rohith kumar.R.
●Given:-
x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)
●To prove:-
LHS=RHS
●Proof:-
Solving RHS
=1 (x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]
2
By using the formula of
●(a-b)^2=a^2+b^2-2ab
= 1 (x+y+z)[(x^2+y^2-2xy)+(y^2+z^2-2yz)
2
+( z^2+x^2-2zx)
= 1 (x+y+z)[(2x^2+2y^2+2z^2
2
-2xy-2yz-2zx)
= 1 (x+y+z)2 ( x^2+y^2+z^2-xy-yz-zx)
2
= (x+y+z) ( x^2+y^2+z^2-xy-yz-zx)
We already know that
x^3+y^3+z^3-3xyz= (x+y+z)(x^2+y^2+z^2-xy-yz-zx)
☆Therefore,
LHS=RHS .
☆Hence proved.
☆Hope it helps u mate.
☆Mark it as BRAINLIEAST please i request.
☆Thank you.