Physics, asked by ShivamKashyap08, 10 months ago

solve this

No Spam,

Correct answers accepted,

Need content quality!!!

Attachments:

Answers

Answered by Anonymous
37

Given:

A triangle ABC in which sides are a, b and c.

To Prove:

\large\bold\red{\frac{a}{ sin A }  =  \frac{b}{ sin B }  =  \frac{c}{  sin C  }}

Proof:

Let,

\vec{AB}  = \vec{c} \\  \\ \vec{BC} =  \vec{a}  \\  \\ \vec{CA}  = \vec{b}

So,

\vec{a}  + \vec{b}  + \vec{c}  = 0

Now,

Using the Properties of Cross Product

we get,

 =  > \vec{a}  \times (\vec{a}  + \vec{b}  + \vec{c} ) = \vec{a}  \times  \vec{0}  \\  \\  =  > (\vec{a} \times \vec{a} ) + (\vec{a}  \times \vec{b} ) + (\vec{a}  \times \vec{c} ) = \vec{0}

( °.° Product of any vector and zero vector is zero )

 =  > \vec{0}  + (\vec{a}  \times \vec{b} ) + (\vec{a} \times  \vec{c} ) = \vec{0}

(°.° Cross product of same vectors is zero )

 =  > (\vec{a}  \times \vec{b})  -  ( \vec{c}  \times \vec{a}) =  \vec{0} \\  \\  =  > ( \vec{a}  \times \vec{b} ) = (\vec{c}  \times \vec{a} )

Therefore,

we get,

=  > a.b \sin(\pi - C)  = c.a \sin(\pi - B)  \\  \\  =  > b \sin(C)  = c \sin(B)  \\  \\  =  >  \frac{ \sin(C) }{c}  =  \frac{ \sin(B) }{b}  \:  \:  \:  \:  \: .........(i)

Similarly,

we can also prove that,

 =  >  \frac{ \sin(A) }{a}  =  \frac{ \sin(B) }{b}  \:  \:  \:  \:  \:  \:  \: ............(ii)

Therefore,

from eqn (i) and eqn (ii),

we conclude that,

\large\bold{\frac{a}{ sin A }  =  \frac{b}{ sin B }  =  \frac{c}{  sin C  }}

Hence,

Proved

Attachments:
Answered by Anonymous
23

\huge{\sf{\underline{\underline{\red{Solution:}}}}}

To Prove:

\bf{\implies \dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}}

So, as we know according to Triangle law of vector.

\bf{\implies \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=0}

\bf{\implies \overrightarrow{a}+\overrightarrow{b}=-\overrightarrow{c}}

Now, cross product by \bf{\overrightarrow{c}} both sides.

\bf{\implies (\overrightarrow{a}+\overrightarrow{b}) \times \overrightarrow{c}=- \overrightarrow{c}\times \overrightarrow{c}}

\bf{\implies (\overrightarrow{a} + \overrightarrow{b})\times \overrightarrow{c}=0}

\bf{\implies \overrightarrow{a}\times \overrightarrow{c}+ \overrightarrow{b}\times \overrightarrow{c}=0}

\bf{\implies \overrightarrow{a}\times \overrightarrow{c}=-\overrightarrow{b}\times \overrightarrow{c}}

\bf{\implies |\overrightarrow{a}||\overrightarrow{c}|\sin (180^{\circ}-B)=|\overrightarrow{b}||\overrightarrow{c}|\sin (180^{\circ}-A)}

\bf{\implies a\sin B = b\sin A\;\;\;\;.............(1)}

\bf{\implies \dfrac{a}{\sin A}=\dfrac{b}{\sin B}}

Similarly,

\bf{\implies \overrightarrow{a}+\overrightarrow{c}=-\overrightarrow{b}}

\bf{\implies (\overrightarrow{a}+\overrightarrow{c})\times \overrightarrow{b}=0}

\bf{\implies |\overrightarrow{a}||\overrightarrow{b}|\sin(180^{\circ}-c)=|\overrightarrow{b}||\overrightarrow{c}|\sin (180^{\circ}-A)}

\bf{\implies a\sin C=c\sin A}

\bf{\implies \dfrac{a}{\sin A}=\dfrac{c}{\sin C}\;\;\;\;\;.........(2)}

From Eq (1) and Eq (2), we get

\bf{\implies \dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}}

Hence Proved!!!!

Attachments:
Similar questions