Math, asked by soymeya56, 6 months ago

Solve this no spam

mind it determind will be A​

Attachments:

Answers

Answered by VJTHUNDER
0

Answer:

Solve this no spam

mind it determind will be A

Step-by-step explanation:

A will be 90...

Mark this as the Brainliest answer (◍•ᴗ•◍)❤(◍•ᴗ•◍)❤(◍•ᴗ•◍)❤(◍•ᴗ•◍)❤(◍•ᴗ•◍)❤(◍•ᴗ•◍)❤( ◜‿◝ )♡( ◜‿◝ )♡( ◜‿◝ )♡( ◜‿◝ )♡( ◜‿◝ )♡( ◜‿◝ )♡( ˘ ³˘)♥( ˘ ³˘)♥( ˘ ³˘)♥( ˘ ³˘)♥( ˘ ³˘)♥( ˘ ³˘)♥( ˘ ³˘)♥

Answered by Anonymous
16

\;\;\underline{\textbf{\textsf{ Given:-}}}

 \\ \:  \:  \:  \left|\begin{array}{cc}\sf cos\:x & \sf\:sin\:x\\\sf\:-\:sin\:x & \sf\:cos\:x\end{array}\right|

\;\;\underline{\textbf{\textsf{ To Find:-}}}

 \\ \:  \:  \:  \left|\begin{array}{cc}\sf cos\:x & \sf\:sin\:x\\\sf\:-\:sin\:x & \sf\:cos\:x\end{array}\right|  = ? \\

\;\;\underline{\textbf{\textsf{ Solution :-}}}

Let the determinant be

 \\ \:  \dashrightarrow  \: A = \left|\begin{array}{cc}\sf cos\:x & \sf\:sin\:x\\\sf\:-\:sin\:x & \sf\:cos\:x\end{array}\right|  \\

• We know that –

 \\ \:  \dashrightarrow  \: A = \left|\begin{array}{cc}\sf a_{11} & \sf a_{12}\\\sf\:a_{21} & \sf a_{22}\end{array}\right|  \\

 \\ \:  \dashrightarrow  \sf A =a_{11}.a_{22} -a_{21}.a_{12} \\

Where,

 \\ \sf \:  \: { \huge{.}}  \:  \: a_{11} =  \cos x \\

 \\ \sf \:  \: { \huge{.}}  \:  \: a_{12} =  \sin x \\

 \\ \sf \:  \: { \huge{.}}  \:  \: a_{21} = - \sin x \\

 \\ \sf \:  \: { \huge{.}}  \:  \: a_{22} =  \cos x \\

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\:\textsf{ Now,  find the value of A  :}}

 \\ \:  \dashrightarrow  \: A = \left|\begin{array}{cc}\sf cos\:x & \sf\:sin\:x\\\sf\:-\:sin\:x & \sf\:cos\:x\end{array}\right|  \\

 \\ \\ \dashrightarrow   \sf A =  ( \cos x).(\cos x) - ( \sin x)( -  \sin x) \\

 \\ \\ \dashrightarrow  \sf A = \cos^{2} x +  \sin^{2}  x \\

 \\  \:  \: \:  \sf \because \:  \:  \:  \cos^{2} x +  \sin^{2}  x  = 1\\

\;\;\underline{\textbf{\textsf{ Hence-}}}

\underline{\textsf{ Value of A  is  \textbf{1 }}}.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions