Math, asked by sumanprayu, 9 months ago

solve this no spam question no 3​

Attachments:

Answers

Answered by Anonymous
6

Question :

Express the following as the product of sines and cosines

(3) sin 2θ + cos 4θ

Answer :

Given :

sin 2θ + cos 4θ

Using trigonometric ratios of complementary angles, cos Φ = sin ( 90 - Φ ) we get

⇒ sin 2θ + sin ( 90 - 4θ )

Applying Sum - to - Product identity we get,

 \boxed{ \rm sin \ C  + sin \ D =  2sin\dfrac{C + D}{2}.cos\dfrac{C  - D}{2}}

 \Rightarrow \sf  2sin\dfrac{2 \theta + (90 - 4 \theta)}{2}.cos\dfrac{2 \theta - (90  - 4 \theta)}{2}

 \Rightarrow \sf  2sin\dfrac{90 - 2\theta}{2}.cos\dfrac{2 \theta - 90   + 4 \theta}{2}

 \Rightarrow \sf  2sin\dfrac{90 - 2\theta}{2}.cos\dfrac{6 \theta - 90   }{2}

 \Rightarrow \sf  2sin\dfrac{2(45 - \theta)}{2}.cos\dfrac{2(3 \theta - 45)   }{2}

 \Rightarrow \sf  2sin \ (45 - \theta).cos \ (3 \theta - 45)

It can be written as

 \Rightarrow \sf  2sin \ (45 - \theta).cos \ \{  - (45 - 3 \theta )  \}

Since cos ( - Φ ) = cos Φ

 \Rightarrow \sf  2sin \ (45 - \theta).cos \ (45 - 3 \theta)

Hence expressed !

Answered by Anonymous
26

↑↑you answer refer to the attachment↑↑

Attachments:
Similar questions