Solve this
Note:-
The right bottom corner is point C
it is not shown so just adjust
Nahi aata toh bolne ki jarurat nahi hai :)
Answers
Step-by-step explanation:
Here given that
AB=25
AD=14cm
BD bisects AC
BC=40
here m<ADB=90°
=>triangle ADB is a right triangle
so
AD=perpendicular(height)
BD=Base
AB=hypertenous
in a right triangle ,
according to Pythagorean theory
=>b=
=
=
=>AC=CD+AD
=18+34
=52
the perimeter of triangle ABC=AB+BC+AC
=52+40+23
=115
Hence DP=18cm and The perimeter of triangle ABC=115
heyy ....
mark brainliest answer plz....
Here given that
AB=25
AD=14cm
BD bisects AC
BC=40
here m<ADB=90°
=>triangle ADB is a right triangle
so
AD=perpendicular(height)
BD=Base
AB=hypertenous
in a right triangle ,
according to Pythagorean theory
\large\blue{\boxed{{p}^{2}+{b}^{2}={h}^{2}}}p2+b2=h2
=>b=\squrt{h}^{2}-{p}^{2}\squrth2−p2
=\squrt{23}^{2}-{14}^{2}\squrt232−142
=\squrt{529}-{196}=\squrt{324}[/tex =18 hence DB=18 in triangle DBC,m < BDC=90° CD=perpendicular(height) BD=base BC=hypertenous = > according to Pythagorean theory CD=[tex]\squrt{40}^{2}-{18}^{2}=\squrt{1600}-{324}=\squrt{1296}=34\squrt529−196=\squrt324[/tex=18henceDB=18intriangleDBC,m<BDC=90°CD=perpendicular(height)BD=baseBC=hypertenous=>accordingtoPythagoreantheoryCD=[tex]\squrt402−182=\squrt1600−324=\squrt1296=34
=>AC=CD+AD
=18+34
=52
the perimeter of triangle ABC=AB+BC+AC
=52+40+23
=115
Hence DP=18cm and The perimeter of triangle ABC=115