Math, asked by Anonymous, 8 months ago

Solve this

Note:-
The right bottom corner is point C
it is not shown so just adjust
Nahi aata toh bolne ki jarurat nahi hai :)​

Attachments:

Answers

Answered by Anonymous
1

Step-by-step explanation:

\huge\mathfrak\blue{\fcolorbox{green}{ANSWER:-}}

Here given that

AB=25

AD=14cm

BD bisects AC

BC=40

here m<ADB=90°

=>triangle ADB is a right triangle

so

AD=perpendicular(height)

BD=Base

AB=hypertenous

in a right triangle ,

according to Pythagorean theory

\large\blue{\boxed{{p}^{2}+{b}^{2}={h}^{2}}}

=>b=\squrt{h}^{2}-{p}^{2}

=\squrt{23}^{2}-{14}^{2}

=\squrt{529}-{196}=\squrt{324}[/tex</p><p>=18</p><p>hence DB=18</p><p>in triangle DBC,m &lt;BDC=90°</p><p>CD=perpendicular(height)</p><p>BD=base</p><p>BC=hypertenous</p><p>=&gt; according to Pythagorean theory</p><p>CD=[tex]\squrt{40}^{2}-{18}^{2}=\squrt{1600}-{324}=\squrt{1296}=34

=>AC=CD+AD

=18+34

=52

the perimeter of triangle ABC=AB+BC+AC

=52+40+23

=115

Hence DP=18cm and The perimeter of triangle ABC=115

Answered by harleengill201
0

heyy ....

mark brainliest answer plz....

Here given that

AB=25

AD=14cm

BD bisects AC

BC=40

here m<ADB=90°

=>triangle ADB is a right triangle

so

AD=perpendicular(height)

BD=Base

AB=hypertenous

in a right triangle ,

according to Pythagorean theory

\large\blue{\boxed{{p}^{2}+{b}^{2}={h}^{2}}}p2+b2=h2

=>b=\squrt{h}^{2}-{p}^{2}\squrth2−p2

=\squrt{23}^{2}-{14}^{2}\squrt232−142

=\squrt{529}-{196}=\squrt{324}[/tex =18 hence DB=18 in triangle DBC,m < BDC=90° CD=perpendicular(height) BD=base BC=hypertenous = > according to Pythagorean theory CD=[tex]\squrt{40}^{2}-{18}^{2}=\squrt{1600}-{324}=\squrt{1296}=34\squrt529−196=\squrt324[/tex=18henceDB=18intriangleDBC,m<BDC=90°CD=perpendicular(height)BD=baseBC=hypertenous=>accordingtoPythagoreantheoryCD=[tex]\squrt402−182=\squrt1600−324=\squrt1296=34

=>AC=CD+AD

=18+34

=52

the perimeter of triangle ABC=AB+BC+AC

=52+40+23

=115

Hence DP=18cm and The perimeter of triangle ABC=115

Similar questions