Math, asked by Anonymous, 2 months ago

Solve this one for me...

Evaluate
tan^(-1) (4)/(5) + tan^(-1) (5)/(7) - tan^(-1) (5)/(6) ​

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

\rm :\longmapsto\: {tan}^{ - 1}\dfrac{4}{5} +  {tan}^{ - 1}\dfrac{5}{7} -  {tan}^{ - 1}  \dfrac{5}{6}

We know,

\boxed{ \sf{ \:  {tan}^{ - 1}x +  {tan}^{ - 1}y =  {tan}^{ - 1}\bigg(\dfrac{x + y}{1 - xy} \bigg)}}

So, bybusing this identity,

\rm \:  =  \:  \: \: {tan}^{ - 1}\bigg(\dfrac{\dfrac{4}{5}  + \dfrac{5}{7} }{1 - \dfrac{4}{5}  \times \dfrac{5}{7} } \bigg) -  {tan}^{ - 1}  \dfrac{5}{6}

\rm \:  =  \:  \: \: {tan}^{ - 1}\bigg(\dfrac{\dfrac{28 + 25}{35} }{ \dfrac{35 - 20}{35}  } \bigg) -  {tan}^{ - 1}  \dfrac{5}{6}

\rm \:  =  \:  \: \: {tan}^{ - 1}\bigg(\dfrac{53 }{ 15} \bigg) -  {tan}^{ - 1}  \dfrac{5}{6}

We know,

\boxed{ \sf{ \:  {tan}^{ - 1}x  -   {tan}^{ - 1}y =  {tan}^{ - 1}\bigg(\dfrac{x  -  y}{1  +  xy} \bigg)}}

So, by applying this identity, we get

\rm \:  =  \:  \: \: {tan}^{ - 1}\bigg(\dfrac{\dfrac{53}{15}   -  \dfrac{5}{6} }{1  + \dfrac{53}{15}  \times \dfrac{5}{6} } \bigg)

\rm \:  =  \:  \: \: {tan}^{ - 1}\bigg(\dfrac{\dfrac{318  - 75}{90} }{ \dfrac{90 + 265}{90}  } \bigg)

\rm \:  =  \:  \: \: {tan}^{ - 1}\bigg(\dfrac{243}{355} \bigg)

Additional information :-

\boxed{ \sf{ \: {sin}^{ - 1}x +  {sin}^{ - 1}y =  {sin}^{ - 1}\bigg(x \sqrt{1 -  {y}^{2} } + y \sqrt{1 -  {x}^{2} }  \bigg)    }}

\boxed{ \sf{ \: {sin}^{ - 1}x - {sin}^{ - 1}y =  {sin}^{ - 1}\bigg(x \sqrt{1 -  {y}^{2} } -  y \sqrt{1 -  {x}^{2} }  \bigg)    }}

\boxed{ \sf{ \: {cos}^{ - 1}x - {cos}^{ - 1}y =  {cos}^{ - 1}\bigg(xy +  \sqrt{1 -  {y}^{2} }\sqrt{1 -  {x}^{2} }  \bigg)    }}

\boxed{ \sf{ \: {cos}^{ - 1}x + {cos}^{ - 1}y =  {cos}^{ - 1}\bigg(xy - \sqrt{1 -  {y}^{2} }\sqrt{1 -  {x}^{2} }  \bigg)    }}

Similar questions