solve this one please
Answers
★ Solution ★
L.H.S =
Again from (1) we have,
L.H.S
From(2) and (3) we get
★ HENCE ★ ↓
PROVED√√
Qᴜᴇsᴛɪᴏɴ :-
Prove :- (cotA - tanA) = (2cos²A - 1)/(sinAcosA) = (1 - 2sin²A)/(sinAcosA)
Sᴏʟᴜᴛɪᴏɴ :-
Taking LHS,
→ (cotA - tanA)
Putting cotA = (cosA/sinA) & tanA = (sinA/cosA) we get,
→ (cosA/sinA) - (sinA/cosA)
taking LCM now,
→ (cos²A - sin²A)/(sinAcosA) -------- Equation (1)..
Now Putting sin²A = (1 - cos²A) in Numerator we get,
→ [ cos²A - (1 - cos²A) ] / (sinAcosA)
→ [ cos²A + cos²A - 1 ] / (sinAcosA)
→ (2cos²A - 1) / (sinAcosA) = MHS (Proved).
______________________
Now, when we put value of cos²A = (1 - sin²A) in Numerator of Equation (1) we get,
→ [ (1 - sin²A) - sin²A ] / (sinAcosA)
→ [ 1 - sin²A - sin²A ] / (sinAcosA)
→ (1 - 2sin²A) / (sinAcosA) = RHS (Proved).
___________________________
Shortcut :-
we can use cos2A = (1 - 2sin²A) = (2cos²A - 1) = (cos²A - sin²A) formula also in Equation (1) to get result right away..