Math, asked by TheKnowledge, 1 year ago

Solve this one !!

thanks !!

Attachments:

Answers

Answered by Anonymous
4
<b>HELLO!!!

Let the parallelogram  ABCD  as shown is  figure

Now,

We have  to  find  base 

Find the coordinates   of B

Solution of  line  AB  and  BC will be  coordinates  of  B

Equations,

3x - 4y + 1 = 0 

4x - 3y - 1 = 0 

on balancing  equations;-

12x - 16 y + 4 = 0 

12x - 9y - 3 = 0 

Substracting,

-7y + 7 = 0 

y = 1

putting  y = 1 in first  equation,

x = 1 

Coordinates  of B = (1,1) 

Similarly,

Find the Coordinates  of A ;-

Solution  of  line  AB and AD  will be  coordinates of  A  ,

equations,

3x - 4y + 1 = 0 

4x - 3y - 2 = 0 

on Balancing eqautions

12x - 16y + 4 = 0 

12x  - 9y - 6 = 0 

Substracting ,

-7y + 10 = 0 

y = 10/7 

putting  y = 10/3 in    first  equation  

x = 11/7 

Hence, Coordinates  of  A  = (11/7, 10/7)

Find  the distance AB;

AB= 5/7

Find the height of   parallelogram;
Distance between 3x-4y+1= 0 and 3x-4y + 3= 0
h= (c1-c2)/√(a²+b²)
h= (3-1)/√(3²+4²)
h = 2/5

Now,

Area of   parallelogram = height × base
= 2/5*5/7 = 2/7 sq units

Hope Its Helps!!!!!☺☺
Attachments:
Answered by amritanshu6
0

Let the parallelogram  ABCD  as shown is  figure

Now,

We have  to  find  base 

Find the coordinates   of B

Solution of  line  AB  and  BC will be  coordinates  of  B

Equations,

3x - 4y + 1 = 0 

4x - 3y - 1 = 0 

on balancing  equations;-

12x - 16 y + 4 = 0 

12x - 9y - 3 = 0 

Substracting,

-7y + 7 = 0 

y = 1

putting  y = 1 in first  equation,

x = 1 

Coordinates  of B = (1,1) 

Similarly,

Find the Coordinates  of A ;-

Solution  of  line  AB and AD  will be  coordinates of  A  ,

equations,

3x - 4y + 1 = 0 

4x - 3y - 2 = 0 

on Balancing eqautions

12x - 16y + 4 = 0 

12x  - 9y - 6 = 0 

Substracting ,

-7y + 10 = 0 

y = 10/7 

putting  y = 10/3 in    first  equation  

x = 11/7 

Hence, Coordinates  of  A  = (11/7, 10/7)

Find  the distance AB;

AB= 5/7

Find the height of   parallelogram;
Distance between 3x-4y+1= 0 and 3x-4y + 3= 0
h= (c1-c2)/√(a²+b²)
h= (3-1)/√(3²+4²)
h = 2/5

Now,

Area of   parallelogram = height × base 
= 2/5*5/7 = 2/7 sq units.

PLEASE MARK MY ANSWER AS A BRAINLIEST.
Similar questions