Math, asked by sai123fos, 11 months ago

Solve this pair of linear equations:

px+qy=p-q
qx-py=p+q​

Answers

Answered by bindidevi002
7

Step-by-step explanation:

plz mark brainly plz...........................

Attachments:
Answered by Thefpsfreeks
2

Answer:

Step-by-step explanation:

Answer:

\\  \sf \:  \: px + qy =  p - q \:  \quad \:  -  -  - (i) \\  \\  \sf \:  \: qx - py = p + q \:  \qquad \:  -  -  - (ii) \\  \\  

Multiplying equation (i) by p and equation (ii) by q , we obtain -

\\  \sf \:  {p}^{2} q + pqy =  {p}^{2} - pq \:  \qquad -  - (iii) \\  \\   \sf \:  {q}^{2}  x - pqy = pq +  {q}^{2}  \:  \qquad -  - (iv) \\  

Adding equation iii and iv , we obtain -

\\  \sf \:  {p}^{2} x +  {q}^{2} x =  {p}^{2}  +  {q}^{2}  \\  \\  \\  \implies \sf \: ( {p}^{2}  +  {q}^{2} ) \: x =  {p}^{2}  +  {q}^{2}  \\  \\  \\  \implies \sf \: x =  \frac{ {p}^{2} +  {q}^{2}  }{ {p}^{2} +  {q}^{2}  }  = 1 \\  

From equation (1), we obtain -

\\  \sf \: p(1) + qy = p - q \\  \\  \\  \implies \sf \: qy =  - q \\  \\  \\  \implies \sf \blue{y =  - 1} \\

Similar questions