Solve this pair of linear equations:
px+qy=p-q
qx-py=p+q
Answers
Step-by-step explanation:
plz mark brainly plz...........................
Answer:
Step-by-step explanation:
Answer:
\\ \sf \: \: px + qy = p - q \: \quad \: - - - (i) \\ \\ \sf \: \: qx - py = p + q \: \qquad \: - - - (ii) \\ \\
Multiplying equation (i) by p and equation (ii) by q , we obtain -
\\ \sf \: {p}^{2} q + pqy = {p}^{2} - pq \: \qquad - - (iii) \\ \\ \sf \: {q}^{2} x - pqy = pq + {q}^{2} \: \qquad - - (iv) \\
Adding equation iii and iv , we obtain -
\\ \sf \: {p}^{2} x + {q}^{2} x = {p}^{2} + {q}^{2} \\ \\ \\ \implies \sf \: ( {p}^{2} + {q}^{2} ) \: x = {p}^{2} + {q}^{2} \\ \\ \\ \implies \sf \: x = \frac{ {p}^{2} + {q}^{2} }{ {p}^{2} + {q}^{2} } = 1 \\
From equation (1), we obtain -
\\ \sf \: p(1) + qy = p - q \\ \\ \\ \implies \sf \: qy = - q \\ \\ \\ \implies \sf \blue{y = - 1} \\