Math, asked by kushagrasaxena10, 1 year ago

Solve this please...... ​

Attachments:

Answers

Answered by spiderman2019
2

Answer:

Step-by-step explanation:

Tan³θ/1+Tan²θ + Cot³θ/1+Cot²θ

//Remember the formulae: 1+Tan²θ = Sec²θ; 1+Cot²θ = Cosec²θ. Substitute in denominators

= Tan³θ/Sec²θ + Cot³θ/Cosec²θ

= (Sin³θ/Cos³θ) / (1/Cos²θ) + (Cos³θ/Sin³θ) / (1 /Sin²θ)

= (Sin³θ/Cos³θ) * (Cos²θ/1)  + (Cos³θ/Sin³θ) * (Sin²θ / 1)

= Sin³θ/Cosθ + Cos³θ/Sinθ

= (Sin⁴θ + Cos⁴θ)  / Sinθ*Cosθ

= [(Sin²θ)² + (Cos²θ)²] / Sinθ*Cosθ

//Remember a²+ b² = (a+b)² - 2ab

= [ (Sin²θ+ Cos²θ)² - 2*Sin²θ*Cos²θ] / Sinθ*Cosθ

= [1 - 2*Sin²θ*Cos²θ] / Sinθ*Cosθ

= [1/Sinθ*Cosθ]  - 2*Sin²θCos²θ/Sinθ*Cosθ

= Secθ*Cosecθ - 2*Sinθ*Cosθ

= R.H.S.

Answered by prachisakhare111
1

Answer:

Step-by-step explanation:

Here you go....

Attachments:
Similar questions