Solve this please......
Attachments:
Answers
Answered by
2
Answer:
Step-by-step explanation:
Tan³θ/1+Tan²θ + Cot³θ/1+Cot²θ
//Remember the formulae: 1+Tan²θ = Sec²θ; 1+Cot²θ = Cosec²θ. Substitute in denominators
= Tan³θ/Sec²θ + Cot³θ/Cosec²θ
= (Sin³θ/Cos³θ) / (1/Cos²θ) + (Cos³θ/Sin³θ) / (1 /Sin²θ)
= (Sin³θ/Cos³θ) * (Cos²θ/1) + (Cos³θ/Sin³θ) * (Sin²θ / 1)
= Sin³θ/Cosθ + Cos³θ/Sinθ
= (Sin⁴θ + Cos⁴θ) / Sinθ*Cosθ
= [(Sin²θ)² + (Cos²θ)²] / Sinθ*Cosθ
//Remember a²+ b² = (a+b)² - 2ab
= [ (Sin²θ+ Cos²θ)² - 2*Sin²θ*Cos²θ] / Sinθ*Cosθ
= [1 - 2*Sin²θ*Cos²θ] / Sinθ*Cosθ
= [1/Sinθ*Cosθ] - 2*Sin²θCos²θ/Sinθ*Cosθ
= Secθ*Cosecθ - 2*Sinθ*Cosθ
= R.H.S.
Answered by
1
Answer:
Step-by-step explanation:
Here you go....
Attachments:
Similar questions