Math, asked by bodakuntalacchanna, 9 months ago

solve this please: ?​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

Given,

( \cos( \alpha )  +  \cos( \beta )) ^{2}  + ( \sin( \alpha )   +  \sin( \beta ) )^{2}

 =  >  \cos^{2} ( \alpha )  +  \cos ^{2} ( \beta )  + 2 \cos( \alpha )  \cos( \beta )  +  \sin^{2} ( \alpha )  +   \sin^{2} ( \beta )  + 2 \sin( \alpha )  \sin( \beta )

We know that, Sin²θ+Cos²θ=1, so,

 =  > 1 + 1 + 2 \sin( \alpha )  \sin( \beta )  + 2 \cos( \alpha )  \cos( \beta )

By using, cos(x-y)=cos(x)cos(y)+sin(x)sin(y), we get,

 =  > 2 + 2( \cos( \alpha  -  \beta ) )

 =  > 2(1 +  \cos( \alpha  -  \beta ))

We also know that, cos(2x)=2cos²(x)-1 =>1+cos(2x)=2cos²(x)

So,

 =  > 2.2 \cos^{2} ( \frac{ \alpha  -  \beta }{2} )

 =  > 4 \cos^{2} ( \frac{ \alpha  -  \beta }{2} )

Hence, proved

Similar questions